Tufts

INFORMED SEARCH 2

= A*search
= Questions?

<
Z
O
>=
<
Qo
O

Heuristic functions

Heuristic functions are:

= Functions that estimate the cost of the <
cheapest path from a state to a goal MANHATTAN DISTANCE
= Designed for the specific search problem & h(s,9) = Isx = gzl + |5y — gy
= h(n) = 0ifn = goal
A valid heuristic function is also
include: h(n) = 1 7 EUCLIDEAN DISTANCE
/]

h(s,9) = \/(Sx — g%+ (Sy - gy)z

CHEBYSHEV DISTANCE
h(s,g) = max(|sy — gxl, |Sy - gyl)

ARTIFICIAL INTELLIGENCE

Heuristic functions

MAZE GRAPH

3 rRrver

@ DRAGON
A Hu

HEURISTIC FUNCTION

A B C
A 17 16
B 17 22
C 16 22
D 25 17 16
E 38 33 25
F 32 40 18
G 29 44 24
H 52 45 39
L 45 34 34
P 53 39 45
R 47 47 31
Q 64 52 52
S 39 25 33

D
25
17
16

17
31
41
29
20
29
32
39
17

38
33
25
17

32
45
14
13
27
18
29
22

32
41
18
31
32

16
43
43
56
25
59
47

29
44
24
41
45
16

58
56
68
41
73
57

52
45
39
29
14
43
58

13
22
23
16
27

45
34
34
20
13
43
56
13

13
30
19
14

53
39
45
29
27
56
68
22
13

43
17
14

47
47
31
32
18
25
41
23
30
43

39
41

64
52
52
39
29
59
73
16
19
17
39

29

39
25
33
17
22
47
57
27
14
14
41
29

TO NOILO3S

= Heuristic function: Cost of the ?

path g(n) (or backward cost) + /@
heuristic function to the goal h(n) S,

(or forward cost) ° N 3
S fC

= Node expansion: Expand first the N
node that has the lowest total cost 2
f(@) = min g(n) + h(c) 3.7 A é

gueue, where the priority is g(n) +

!
h(n) OIRINO

200 " 3 RIVER
G G DRAGON
A v

‘ A
* Implementation: Use a Priority q)

1 function A-star(PROBLEM) return SOLUTION, or FAILURE

fuetion star FROREN) xeturn SOUTON, - FALR 2 initialize the frontier using the initial state of PROBLEM
1‘an$ 0 3 loop do
loop 4 if the frontier is empty then

if the frontier § H ’ 5 return FAILURE

o G 6 pop node from frontier with mEing(c)+cost+h(c)

¢ u:‘n Y 7 if the node contains a goal state then

ap node fron Frontier itk ming() st K = 2

t return the corresponding SOLUTION
ins 2 el ste ten 9 expand the chosen node
! ﬁ& 10 for each child

P A{ 11 iT child is not in the frontier or visited then

fur exch hild 12 insert child in frontier

o 13 else if child is in frontier with higher cost then

if il s 14 replace child in frontier with child

insert child 15 end

The algorithm behaves very similarly to a

3 R Uniform-Cost Search algorithm.

VISITED

D(3)+41/44

B (3+1) +44 /48
E(9)+45/54
R(9+2) +41/52
F(9+2+2)+16/29

PRUNED
E(3+8) +45/56

@54 VISITED

9

e ' PRUNED

@ 5 FRONTIER

15
@ 15 VISITED

FRONTIER

G (9+2+2+2) +0 /15
P(1)+68/69

H (9+8) +58 /75

A (3+1+200) + 29 / 233
C(3+200) + 24 / 247

= Completeness: Yes, only if € is
strictly positive

= Optimality: Yes, if the heuristic
is admissible and consistent

= Time complexity: 0(b™)
= Space complexity: 0(b™)

m A* is optimally efficient. It expands the
minimum number of nodes b™ nodes

Space requirements can be high

A* search

S 3
o A A

UNIFORM-COST SEARCH A*

FRONTIER ‘ G G

11

A* search

The idea is that A* is optimal if the heuristic is admissible, that is:
=0 < h(n) <h"(n)

= Where h*(n) is the true cost to a nearest goal. An admissible heuristic
function is also called optimistic.

= Examples: Manhattan and Euclidean distances are admissible because the
cost they express will always be smaller than the real cost to the goal (don't
go through obstacles!)

12

A* search

The idea is that A* is optimal also if the heuristic is consistent, that is:
= h(n) < c(n,a,n’) + h(n")

= That is, for every node n and every successor n’ of n generated by any
action a, the estimated cost of reaching the goal from n is no greater than
the step cost of getting n’ plus the estimated cost of reaching the goal from
n'.

13

Heuristic functions

= Given two admissible heuristics hy(n) and h,(n): If h,(n) = hy(n) for all nodes

n, then h, dominates h,

8-PUZZLE
= h,(board): number of misplaced tiles

= h,(board): sum of Manhattan
distances between desired and
actual location of each tile

= [t means that with h,, A* expands fewer states, and therefore more efficient

hy(board) =8
hy(board) = 3+1+2+2+2+3+3+2 = 18

14

A* search

We want to demonstrate that, if h is admissible, the solution found by A* is optimal.

Let's have two goals A and B. A is optimal, B is sub-optimal.
g(4) < g(B)

We can demonstrate that there would be a contradiction if A* returned B instead of A.
Note that when selecting a node from the frontier, we select the node s such that:

g(s) + h(s) < g(s') + h(s")
for all other nodes s’ in the frontier. This also means that selecting B:
g(B) +h(B) < g(s') + h(s")

Because B is a goal, h(B) = 0, by the definition of heuristic:
g(B) < g(s") + h(s")

15

A* search

Now, we note that A must have had
some ancestor node in the frontier;
let's call it n. Since h is admissible and
underestimates the cost the goal:

g(m) +h(n) < g(4)

But since B was selected instead of A4,
it must be that:

g(B) +h(B) = g(B) < h(n) + g(n) < g(4)
g(B) <g(4)

which is in contradiction with the initial
assumptions. m

16

A* search

= |terative deepening A* (IDA*)

= Memory-bound A* (MA*) and Simplified Memory-bound A* (SMA*)

17

QUESTIONS ?

18

