

LOCAL SEARCH Fabrizio Santini | COMP 131

VERSION 1.1

	 Hill climbing Simulated annealing Genetic algorithms Questions?
TODAY ON AI	

ARTIFICIAL INTELLIGENCE	Local search algorithms	
 This class of a complete stat 	algorithms operate on single current nodes that represent the search	
• The current s	state is the only thing that matter	
The state is ev	valuated with an objective function	
They generally tend to move through neighborhoods		
GOOD Generally muc state space. M	ch faster for large or infinite lore memory efficient	
BAD Incomplete an search	id suboptimal. Not systematic	

ARTIFICIAL INTELLIGENCE Simulated annealing and hill climbing

- Simulated annealing is inspired by statistical physics
- **Annealing** is used in metal forging and glass making to aid the formation of crystal structures in the material
- The process slowly reduces the temperature the material to allow initial more random arrangements of atoms. At lower temperatures the crystallin structure is more stable

ARTIFICIAL INTELLIGENCE Simulated annealing

- The basic idea follows the **annealing physical metaphor**: select random successors with decreasing probability, also known as **temperature**.
- A gradient ΔE is calculated:
 - If $\Delta E > 0$ the new state is **accepted immediately** as an improvement
 - If $\Delta E < 0$ the new state is **accepted only with a probability** that depends on ΔE and T
- If *T* decreases slowly enough, the algorithm will converge

ARTIFICIAL INTELLIGENCE

Simulated annealing ALGORITHM STRATEGY

```
1 function Simulated-annealing(PROBLEM, SCHEDULE) return SOLUTION, or FAILURE
 2
 3 current = Make-node(PROBLEM.initial-state)
 4
 5 loop do
    T = SCHEDULE (t)
 б
 7
    if T = 0 then
 8
      return current.state
    next = a randomly selected successor of current \Delta E = next.value - current.value
 9
10
    if \Delta E > 0 then
11
12
       current = next
     else
13
       current = next only with probability e^{\frac{\Delta E}{T}}
14
```

ARTIFICIAL INTELLIGENCE	205
Temperature: 25.0	WM WWWWW
	Animation by Kingpin13, Wikimedia Commons.

Genetic algorithms BASIC COMPONENTS An hypothesis is described by a **chromosome** • Few successor functions are needed (also known as **fringe functions**): Mutation crossover • A **fitness function** is used to implement a natural selection process • A **solution test** is required if different from the fitness function • Some general parameters guide the evolution of the population: Population size Generation limit

ARTIFICIAL INTELLIGENCE

ARTIFICIAL INTELLIGENCE Genetic algorithms STRATEGY

- Start with a random population
- Apply a fitness function to recognize the fittest individuals
- Keep *N* hypotheses at each step that have a high value of a fitness function
- Apply one or more **successor operations** to generate a new population
- Possibly cull the less fit individuals and remove them
- Apply the solution test to the best candidate
- Start over

ARTIFICIAL INTELLIGENCE Genetic algorithms successor functions

- Mutation fringe operation: given a candidate, return a slightly different candidate
- Crossover fringe operation: given two candidates, produce one that has elements of each
- We don't always generate a successor for each individual. Rather, we generate a successor **population** based on the individuals in the current population, weighted by fitness

ARTIFICIAL INTELLIGENCE	Genetic algorithms POPULATION GENERATION	305
 A new populat Given a popul candidates w Get P" by mut Return P" 	ion can be generated by: lation <i>P</i> , generate <i>P</i> ' by performing crossover <i>P</i> times, each time selecting ith probability proportional to their fitness tating each individual in <i>P</i> '	9
 There are man The previous generation Crossover is r Mutation is full 	y approaches: approach doesn't explicitly allow individuals to survive more than one not necessary, though it can be helpful in escaping local maxima indamental	
		21

