
LOCAL SEARCH
Fabrizio Santini | COMP 131

VERSION 1.1

1

T
O

D
A

Y
 O

N
 A

I

 Hill climbing

 Simulated annealing

 Genetic algorithms

 Questions?

2

ARTIFICIAL INTELLIGENCE
WHAT ARE THEY?

Local search algorithms

 Local search algorithms aim to solve Constraint Satisfaction Problems.
Specifically, they are tailored to find a solution to problems whose search
space is very big or infinite

 They can always provide an answer to the problem, even if it is both not
definitive nor correct

3

ARTIFICIAL INTELLIGENCE

4

ARTIFICIAL INTELLIGENCE

Local search algorithms work best when the
fitness landscape is continuous.

4

ARTIFICIAL INTELLIGENCE Local search algorithms

 This class of algorithms operate on single current nodes that represent the
complete state of the search

 The current state is the only thing that matter

 The state is evaluated with an objective function

 They generally tend to move through neighborhoods

Generally much faster for large or infinite
state space. More memory efficient

GOOD

BAD Incomplete and suboptimal. Not systematic
search

5

Hill climbing algorithms

S
E

C
T

IO
N

 0
1

6

ARTIFICIAL INTELLIGENCE
SIMPLEST FAMILY OF ALGORITHMS

101Hill climbing

 Hill climbing algorithm is the most basic local search technique

 At each step, the current node is replaced by the best neighbor

 Hill climbing is greedy in nature

function Hill-climbing(PROBLEM) return SOLUTION, or FAILURE

current = Make-node(PROBLEM.initial-state)

loop do
neighbor = a highest-valued successor of current
if neighbor.value ൑ current.value then
return current.state

current = neighbor

1
2
3
4
5
6
7
8
9

7

ARTIFICIAL INTELLIGENCE
SIMPLEST FAMILY OF ALGORITHMS

102Hill climbing

OBJECTIVE FUNCTION

STATE SPACE

SHOULDER

GLOBAL MAX

LOCAL MAX

FLAT LOCAL MAX

CURRENT STATE

BAD It can easily get stack in local maxima, ridges and plateau

Very simple to implementGOOD

8

ARTIFICIAL INTELLIGENCE
RANDOM RESTARTS

103Hill climbing

 Randomly choose to initialize several times

 Implement hill climbing for each initialization and find the optimal

 If each hill climbing search has a probability ࢖ of success, then the
expected number of restarts required is 1/݌.

OBJECTIVE FUNCTION

STATE SPACE

9

Simulated annealing

S
E

C
T

IO
N

 0
2

10

ARTIFICIAL INTELLIGENCE 201Simulated annealing and hill climbing

 Simulated annealing is inspired by statistical physics

 Annealing is used in metal forging and glass making to aid the formation of
crystal structures in the material

 The process slowly reduces the temperature the material to allow initial
more random arrangements of atoms. At lower temperatures the crystallin
structure is more stable

11

ContentsARTIFICIAL INTELLIGENCE 202

The Traveling Salesman Problem is a
mathematical problem, formulated by W.
R. Hamilton in the 1800s, in which one
has to find which is the shortest route
which passes through each of a set of
points once and only once.

http://shiny.rstudio.com/ Animation by shiny.rstudio.com

12

ARTIFICIAL INTELLIGENCE
ALGORITHM STRATEGY

203Simulated annealing

 The basic idea follows the annealing physical metaphor: select random
successors with decreasing probability, also known as temperature.

 A gradient ∆ܧ is calculated:
• If ∆ܧ ൐ 0 the new state is accepted immediately as an improvement
• If ∆ܧ ൏ 0 the new state is accepted only with a probability that depends on ∆ܧ and ܶ

 If ܶ decreases slowly enough, the algorithm will converge

13

ARTIFICIAL INTELLIGENCE
ALGORITHM STRATEGY

204Simulated annealing

function Simulated-annealing(PROBLEM, SCHEDULE) return SOLUTION, or FAILURE

current = Make-node(PROBLEM.initial-state)

loop do
ܶ = SCHEDULE(ݐ)
if ܶ = 0 then
return current.state

next = a randomly selected successor of current
ܧ∆ = next.value – current.value
if ܧ∆ > 0 then
current = next

else
current = next only with probability ݁

∆ಶ
೅

1
2
3
4
5
6
7
8
9
10
11
12
13
14

14

ContentsARTIFICIAL INTELLIGENCE 205

Animation by Kingpin13, Wikimedia Commons.

15

Genetic algorithm

S
E

C
T

IO
N

 0
3

16

ARTIFICIAL INTELLIGENCE 301Genetic algorithm

 Genetic algorithms are a randomized heuristic search strategy

 They use a natural selection metaphor to find the best solution to a
problem

 The selection process is applied to a population that is composed of
candidate solutions

 The purpose is to evolve a population from which strong and diverse
candidates can emerge via mutation and crossover, also known as mating

17

17

ARTIFICIAL INTELLIGENCE
BASIC COMPONENTS

302Genetic algorithms

 An hypothesis is described by a chromosome

 Few successor functions are needed (also known as fringe functions):
• Mutation
• crossover

 A fitness function is used to implement a natural selection process

 A solution test is required if different from the fitness function

 Some general parameters guide the evolution of the population:
• Population size
• Generation limit

18

18

ARTIFICIAL INTELLIGENCE
STRATEGY

303Genetic algorithms

 Start with a random population

 Apply a fitness function to recognize the fittest individuals

 Keep ܰ hypotheses at each step that have a high value of a fitness function

 Apply one or more successor operations to generate a new population

 Possibly cull the less fit individuals and remove them

 Apply the solution test to the best candidate

 Start over

19

ARTIFICIAL INTELLIGENCE
SUCCESSOR FUNCTIONS

304Genetic algorithms

 Mutation fringe operation: given a candidate, return a slightly different
candidate

 Crossover fringe operation: given two candidates, produce one that has
elements of each

 We don’t always generate a successor for each individual. Rather, we
generate a successor population based on the individuals in the current
population, weighted by fitness

20

20

ARTIFICIAL INTELLIGENCE
POPULATION GENERATION

305Genetic algorithms

 A new population can be generated by:
• Given a population ܲ, generate ܲ’ by performing crossover |ܲ| times, each time selecting

candidates with probability proportional to their fitness
• Get ܲ’’ by mutating each individual in ܲ’
• Return ܲ’’

 There are many approaches:
• The previous approach doesn’t explicitly allow individuals to survive more than one

generation
• Crossover is not necessary, though it can be helpful in escaping local maxima
• Mutation is fundamental

21

21

ARTIFICIAL INTELLIGENCE 306Genetic algorithms

 Faster and with lower memory requirements

 It can explore a very large search space

 Easy to design

 Randomized – not optimal or even complete

 Can get stuck on local maxima, though crossover can help mitigate this

 It can be hard to design a chromosome

22

GOOD

BAD

22

ARTIFICIAL INTELLIGENCE
EXAMPLE: COLORING THE AUSTRALIA MAP

307Genetic algorithms

 STATES
Color the Australia map so that neighboring regions do
not match

 CHROMOSOME

 FITNESS FUNCTION
Number of pairs of regions that do not violate the
constraint (max value 10)

WA NT Q NSW V SA T

R G R B R B B

R R R G G B B

G G R B B R R

R G B B R B G

G G R R R B B

G B G B R B B

B G B G R R R

G B B G B R B

9 14%

7 11%

7 11%

7 11%

7 11%

8 13%

9 15%

9 14%

1

2

3

4

5

6

7

8

63 100%

WESTERN
AUSTRALIA

NORTHERN
TERRITORY

SOUTH
AUSTRALIA

QUEENSLAND

NEW SOUTH
WALES

VICTORIA

TASMANIA

23

ARTIFICIAL INTELLIGENCE
EXAMPLE: COLORING THE AUSTRALIA MAP

308Genetic algorithms

R G R B R B B

R R R G G B B

G G R B B R R

R G B B R B G

G G R R R B B

G B G B R B B

B G B G R R R

G B B G B R B

9 14%

7 11%

7 11%

7 11%

7 11%

8 13%

9 15%

9 14%

1

2

3

4

5

6

7

8

R G R B R B B

R R R G G B B

G G R B B R R

R G B B R B G

G G R R R B B

G B G B R B B

B G B G R R R

G B B G B R B

1

2

3

4

5

6

7

8

If culling is applied, the least fit
individuals are eliminated

R G G B R B B

G B R B R B B

B G B G B R B

G B B G R R R

3

4

1

2

G B G B R B B

B B G B R B B

G G B G R R R

R G R G B R B

7

8

5

6

R G G B R B B

G B R B R B B

B G B G B R B

G B B G R R R

3

4

1

2

G B G B R B B

B B G B R B B

G G B G R R R

R G R G B R B

7

8

5

6

POPULATION SELECTION CROSS‐OVER MUTATION

24

ARTIFICIAL INTELLIGENCE
ALGORITHM STRATEGY

309Genetic algorithms

function GENETIC‐ALGORITHM (population, FITNESS‐FN) return an individual
repeat

new population ← empty set
for i = 1 to SIZE(population) do

x ← RANDOM‐SELECTION(population, FITNESS‐FN)
y ← RANDOM‐SELECTION(population, FITNESS‐FN)
child ← REPRODUCE(x, y)
if (small random probability) then child ← MUTATE(child)
add child to new population

population ← new population
until some individual is fit enough, or enough time has elapsed
return the best individual in population, according to FITNESS‐FN

function REPRODUCE(x, y) return an individual
n ← LENGTH(x)
c ← random number from 1 to n
return APPEND(SUBSTRING(x, 1, c), SUBSTRING(y, c + 1, n))

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

25

QUESTIONS ?

26

