

FIRST-ORDER LOGIC

Fabrizio Santini | COMP 131A

VERSION 1.

	Disaster zonePropositional Logic is a weak language
	 First-order Logic
	Questions?
TODAY ON AI	

ARTIFICIAL INTELLIGENCE Propositional Logic is a weak language GOOD AND BAD

- Propositional Logic is **declarative**
- Propositional Logic is compositional:
 The meaning of S1 A S2 is derived from meaning of S1 and of S2
- Propositional Logic is context-independent (unlike natural language)
- Propositional Logic assumes that the world contains only facts

ARTIFICIAL INTELLIGENCE Propositional Logic is a weak language

Unfortunately Propositional Logic has very **limited** expressive power (unlike natural language):

- Hard to identify individuals:
 Every pit causes breeze in adjacent squares
- Can't directly talk about **properties** and relations between individuals: RR1 is red
- Generalizations, patterns, regularities can't easily be represented: All SRR robots have a left arm

ARTIFICIAL INTELLIGENCE First-order Logic

First-order Logic is a powerful evolution of the Propositional Logic that is expressive enough to concisely represent generalizations, relationships, properties.

- Like natural language, FOL assumes that the world contains concepts like:
 - Objects: robot, people, houses, numbers, colors, baseball games, wars, ...
 - Relations: red, blue, round, prime, brother of, bigger than, part of, comes between, ...
 - Functions: leader of, father of, best friend, one more than, plus, ...

ARTIFICIAL INTELLIGENCE First-order Logic

- First-order logic (FOL) models the world in terms of:
 - Objects: things with individual identities
 - Properties: properties of objects that distinguish them from other objects
 - **Relations**: relationships that hold among sets of objects
 - Functions: a subset of relations where there is only one value for any given input

Examples:

- **Objects**: Victim, Robot, Sq00, Sq01...
- **Properties**: *blue*(*Robot*)
- **Relations**: Color(x, Red)
- **Functions**: *Loc*(*Robot*, *Step*0) = *Sq*00

ARTIFICIAL INTELLIGENCE	First-order Logic grammar			103
 Term: Constant symbols, variable symbols, or functions 		FIRST-ORDER LOG	HC GRAMMAR	
Atom: Relations		Term →	Constant Variable Function	
 Atoms are combined by connectives to produce other atoms: 		Atom \rightarrow	Predicate(Term1, Term2,) ¬s Atom Connective Atom	
\wedge and	Conjunction	Sentence \rightarrow	(Sentence)	
V OR	Disjunction		Quantifier Sentence	
\rightarrow implies	Implication / conditional			
\leftrightarrow is equivale	NT Biconditional	Connective \rightarrow	$\land, ~\lor, \rightarrow, \leftrightarrow$	
□ NOT	Negation			
Sentence: quantified sentences		Quantifier \rightarrow	Ξ, ∀	
EXISTS	Existential quantifier			
\forall for all	Universal quantifier			

ARTIFICIAL INTELLIGENCE	First-order Logic evaluation of truth		104
Sentences are true with respect to a model and an interpretation			
Model contains objects (domain elements) and relations among them			
 Interpretation specifies referents for: constant symbols → objects 			
predicate sy	mbols $ ightarrow$	relations	
function sym	nbols $ ightarrow$	functional relations	
 A sentence predicate(term₁,, term_n) is true if f the objects referred to by term₁,, term_n are in the relation referred to by predicate 			

ARTIFICIAL INTELLIGENCE	First-order Logic existential quantifier: common usage and mistakes	107
 Existential qua properties abo 	antifiers are normally used with and (^) to specify a list of but that particular object:	
∃x: Square (x)	A Free(x) means There is a square which is also free	
A common mis	stake is to use it with an implication (\rightarrow):	
∃x: Square (x)	→ Free(x) means There is a square [therefore] it is fre	e

ARTIFICIAL INTELLIGENCE	First-order Logic universal quantifier: common usage and mistakes	109
Universal quar	ntifiers are often used with "→" to form rules	
 Universal quare every individu 	ntification is rarely used to make blanket statements about al in the world:	
∀x: Unsafe (x)	means Every object [in the world] is unsafe	
∀x: Square(x) unsafe	∧ Unsafe (x) means All the square [in the world] are	

ARTIFICIAL INTELLIGENCE	First-order Logic order of evaluation	110
Switching the order of universal quantifiers does not change the meaning:		
	$\forall x \; \forall y \colon P(x,y) \leftrightarrow \forall y \forall x \; P(x,y)$	
Switching the	order of existential quantifiers not does change the meaning:	
	$\exists x \exists y: P(x,y) \leftrightarrow \exists y \exists x P(x,y)$	
 Switching the meaning: 	order of existential and universal quantifiers does change the	
∀x∃y: Loves(x,	y) or $\forall x (\exists y: Loves(x, y))$ means?	
∃y ∀x: Loves (x,	y) or $\exists y (\forall x: Loves(x, y))$ means?	

"Everybody loves someone" "There is someone who is loved by everybody"

ART	FICIAL INTELLIGENCE First-order Logic REPLACING QUANTIFIERS	113
	■ We can relate sentences involving ∀ and ∃	using De Morgan's laws:
	SENTENCE	EQUIVALENT
	$\forall x \ \neg P(x)$	$\nexists x P(x)$
	$\neg \forall x \ P(x)$	$\exists x \neg P(x)$
	$\forall x P(x)$	$\exists x \neg P(x)$
	$\exists x P(x)$	$\neg \forall x \neg P(x)$

