
BEHAVIOR TREES
Fabrizio Santini | COMP 131A

VERSION 1.1

1

T
O

D
A

Y
 O

N
 A

I

 Reactive planning and Behavior Trees

 What’s a Behavior Tree?

 What can a Behavior Tree do?

 Behavior Tree elements

 Behavior Tree features

 Design patterns

 Questions?

2

ARTIFICIAL INTELLIGENCE

Prepared by Bruce Capobianco, reviewed by
IT and People Resources 3

Reactive planning and Behavior Trees

S
E

C
T

IO
N

 0
1

4

ARTIFICIAL INTELLIGENCE 101

5

ARTIFICIAL INTELLIGENCE 102What is NOT an AI Behavior Tree?

Wikipedia defines a Behavior Tree as: Behavior trees are a formal, graphical
modeling language used in Systems and Software Engineering. Behavior
trees employ a well-defined notation to unambiguously represent natural
language requirements for large-scale software-integrated systems.

 Developed by R. G. Dromey with some key concepts published in 2001

 Used to describe: large-scale systems, embedded systems, role-based
access control, biological systems, etc.

R. G. Dromey, Genetic Software Engineering - Simplifying Design Using Requirements
Integration, IEEE Working Conference on Complex and Dynamic Systems Architecture,
Brisbane, Dec 2001.

Prepared by Bruce Capobianco, reviewed by
IT and People Resources 6

ARTIFICIAL INTELLIGENCE 103Reactive planning

 Reactive planning denotes a class of algorithms for action selection by
autonomous agents

 Reactive planning is different from classical planning:
• They are time-bound so they can quickly deal dynamic and unpredictable environments
• They compute just one next action in every instant, based on the current context

7

- requirements to avoid “short-term memory overload” and natural language
ambiguities
-

Prepared by Bruce Capobianco, reviewed by
IT and People Resources 7

ARTIFICIAL INTELLIGENCE 104What’s a AI Behavior Tree?

 In 2004 and 2005, Halo 2 and Façade AI designers adopted a similar
graphical representation and name for a different formalism

 They wanted to synthesize a number of techniques and algorithms in one
manageable tool:

• Finite State Machines
• Hierarchical Finite State Machines
• Scheduling
• Search
• Resource Conflict Resolution

8

- requirements to avoid “short-term memory overload” and natural language
ambiguities
-

Prepared by Bruce Capobianco, reviewed by
IT and People Resources 8

ARTIFICIAL INTELLIGENCE 105Finite State Machines are not good for Game AIs

 While finite state machines are reasonably intuitive for simple cases, as
they become more complex they are hard to keep goal-oriented

 As the number of states increases, the transitions between states become
exponentially complex

 Hierarchical state machines can help, but many of the same issues remain

9

ContentsARTIFICIAL INTELLIGENCE 106

10

Behavior Tree elements

S
E

C
T

IO
N

 0
2

11

ARTIFICIAL INTELLIGENCE
CLASSES OF ELEMENTS

201BT elements

 Behavior trees organize their nodes into a tree or, more generally, directed
acyclic graph (DAG)

 Tasks, conditions, composites, and decorators are the basic elements of
a behavior tree. They are specific to the application field:

ELEMENT REPRESENTATION RESULT

A task alters the state of the system SUCCEEDED, FAILED, or RUNNING

A condition tests some property
of the system SUCCEEDED, or FAILED

A composite aggregates tasks
and conditions SUCCEEDED, FAILED, or RUNNING

A decorator alters the basic behavior of the
tree-node it is associated with SUCCEEDED, FAILED, or RUNNING

12

ARTIFICIAL INTELLIGENCE
COMPOSITES

202BT elements

 The most common composites are:
• Sequence: Children are evaluated in order (left to

right). It fails as soon as one of the children fails,
otherwise it succeeds

• Selection: Children are evaluated in order (left to right).
It fails if all children have failed, otherwise it succeeds

• Priority: Like selection, but the children are evaluated
in order of priority

• Random sequence: Like sequence, but the children are
evaluated in random order

• Random selection: Like selection but the children are
evaluated in random order

13

ARTIFICIAL INTELLIGENCE
DECORATORS

203BT elements

 The most common decorators are:
• Logical negation: It executes the attached node and

then it negates its result

• Until Fail: It executes the attached node until it fails

• Resource semaphore: It resolves conflicts between
nodes associated with the same resource

• Timer: It executes the attached node for a specific
amount of time

14

ARTIFICIAL INTELLIGENCE
ADDING DATA TO BTS

204BT elements

 Real Behavior Tree implementations normally have a inter-task
communication mechanism called blackboards.

 The blackboard implementation is one big design choice:
• One blackboard for the whole tree
• Sub-tree private blackboards
• All the above

 The simplest implementation of a blackboard is a hash-table or dictionary:
• The key is the variable name
• The value is the variable value

Data stored in the blackboard can have a simple nature (records, or class containers).
They can also make use of the full power of the language specific RTTI (if available).

15

ARTIFICIAL INTELLIGENCE 205Typical selector behavior

class Selector(Node)
function run()

for child in children
if child.run()
return TRUE

return FALSE

1
2
3
4
5
6

Try all the children until one succeeds.

16

ARTIFICIAL INTELLIGENCE 206Typical sequence behavior

class Sequence(Node)
function run()

for child in children
if not child.run()
return FALSE

return TRUE

1
2
3
4
5
6

Execute all the children sequentially, succeeding if all succeed.

17

ContentsARTIFICIAL INTELLIGENCE 207

18

ContentsARTIFICIAL INTELLIGENCE 208

19

ContentsARTIFICIAL INTELLIGENCE 209

20

Behavior Tree features

S
E

C
T

IO
N

 0
3

21

ARTIFICIAL INTELLIGENCE
Best features

301BT features

BTs have a number of highly desirable features:
 The basic components are reusable

 Designers have full control

 AI can be goal directed and autonomous

 AI can respond to events

 The knowledge base is easy to read and debug

 The knowledge base is easy to maintain

Full control: micromanage behaviors – perfect designer supervision

Goal directed: Easier to separate goals from behaviors

Prepared by Bruce Capobianco, reviewed by
IT and People Resources 22

ARTIFICIAL INTELLIGENCE
Improvements over HFSM

302BT features

BTs also have a number of improvements over hierarchical finite state
machines:

 The history of the state transitions is clear

 Easy to build sequences

 Easy to add new behaviors without rewiring

No recursion to confuse things

23

ARTIFICIAL INTELLIGENCE
Criticism

303BT features

 It is hard to come up with a minimal set of tasks, conditions, and decorators

 Less important criticism:
• Slow to react to changes in strategy

• Do not implement a full search in the search space, rather a so-called “reactive search”

24

Design patterns

S
E

C
T

IO
N

 0
4

25

ARTIFICIAL INTELLIGENCE 401Basic Design Patterns

TASKS IF-THEN-ELSE RULE NAME

return C1 Empty

return T1 Always

if C1:
return T1

else
return failed

Conditional execution

if C1 | C2:
return T1

else
return failed

Conditional execution OR

26

ARTIFICIAL INTELLIGENCE 402Basic Design Patterns

TASKS IF-THEN-ELSE RULE NAME

if C1 & C2:
return T1

else
return failed

Conditional Execution AND

return not C1 Negation

if not Ti1.has_expired():
return T1

else
return succeeded

Timer

if T1 == succeeded
return running

else
return succeeded

Until fail

27

QUESTIONS ?

28

