

COGNITIVE ARCHITECTURES

Fabrizio Santini | COMP 131A

VERSION 1.2

- Cognitive architectures
- Cognitivist cognitive architectures
- Emergent cognitive architectures
- Choses of CAs
- Questions?

The ultimate goal of AI is to construct **generally intelligent systems** with intellectual capacities similar to humans

- The accepted paradigms for Generally Intelligent Systems:
 - 1. Multi-agent systems
 - 2. Blackboard systems
- Al is highly fractured in specific fields: Computer Vision, Natural Language Processing, Planning
- We tend to design algorithms for a single domain, and evaluated their effectiveness in that domain
- Good performance in these isolated systems does not guarantee generally intelligent systems

Cognition is the mental action or process of acquiring knowledge and understanding through thought, experience, and the senses

- Allen Newell (1973) critiqued cognitive psychologists who studied components of cognition (e.g., language, memory, attention) in isolation without considering their interaction
- His thesis was that Psychology is ready for unified theories of cognition
- In 1982, Newell was the first one to use the term Cognitive Architecture

ARTIFICIAL INTELLIGENCE

SOAR Laird, Newell, Rosenbloom (1987)

The goal of SOAR is to develop the fixed computational building blocks needed by a general intelligent agent.

We should develop general Al systems and evaluate them with based on their **generality and flexibility**, i.e., the breadth of domains they can handle

Cognitive architectures

SECTION 01

- 101
- Cognitive architectures go beyond by making architectural commitments base on cognitive theories
- A cognitive architecture is an **embodiment of a scientific hypothesis** about those aspects of human cognition that are:
 - Constant over time
 - Independent of task
- Overall structure and organization of a cognitive system:
 - Essential Modules
 - Essential relations between these modules
 - Essential algorithmic and representational details in each module

Cognitivist cognitive architectures

- How are the agent's beliefs, goals, and knowledge stored and accessed in short-term memory and long-term memory?
- How are such memories structured?
- What process make use of these structures to make decisions and solve problems?

Cognitivist cognitive architectures try to answer questions like:

- What process adapt these structures to effect learning?
- How is attention directed, and what is its effect?
- How can we, as humans, actually go about encoding knowledge and processes (i.e., program) in a way that supports these commitments?

Emergent cognitive architectures

Emergent approaches focus on development – from a primitive state – to fully cognitive state, over the system's lifetime

- The cognitive architecture is the system's phylogenetic configuration the basis for ontogenesis: growth and development
 - Innate skills
 - Core knowledge (initial skills)
- A structure in which to embed mechanisms for:
 - Perception
 - Action
 - Adaptation
 - Anticipation
 - Motivation
- How does the agent's physical morphology affect development?

ARTIFICIAL INTELLIGENCE

Emergent cognitive architectures CRITICAL EXPONENTS OF THE EMERGENT COGNITIVE MOVEMENT

Children go through **four distinct stages** of cognitive development

Focuses on active assimilation or accommodation of new information

JEAN PIAGET 1896 - 1980

LEV VYGOTSKY 1896 - 1934

Cognitive development is continuous

Focuses on internalization of **interactions and dialogues**

- Sensorimotor stage (0 2 years): the infants constructs an understanding of the world by coordinating sensory experiences with physical actions
- 2. Preoperational stage (2 7 years): the child beings to represent the world with words and images. These words and image reflect increased symbolic thinking and go beyond the connection of sensory information and physical action
- **3. Concrete operational stage** (7 11 years): The child can now reason logically about concrete events and classify objects into different sets
- Formal operational stage (11 adulthood): The adolescent reasons in more abstract, idealistic, and logical ways

Choices of cognitive architectures

- Is the architecture ecologically realistic?
 - Can it perform everyday activities?
 - Can it deal with simultaneous, conflicting goals?
 - Does it take embodiment into account?

Is the architecture evolutionarily realistic?

Can it be reduced to a plausible model of animal cognition?

Is the architecture cognitively realistic?

• Does it capture the essential characteristics of behavior and cognition, based on our knowledge of psychology, philosophy, and neuroscience?

Is it methodologically general?

• A cognitive architecture shouldn't commit to specific methodologies unless there's a good reason for it, or future research could be overly constrained.

Desired characteristics

COGNITIVIST COGNITIVE ARCHITECTURES

EMBODIMENT

Cognition is independent of the physical platform in which it is implemented

PERCEPTION

Perception provides an interface between the external world and the symbolic representation of that world

ACTION

Actions are causal consequences of symbolic processing of internal representations

ANTICIPATION

Anticipation typically takes the form of planning using some form of procedural or probabilistic

EMERGENT COGNITIVE ARCHITECTURES

Intrinsically embodied, the physical instantiation plays a direct constitutive role in the cognitive process

Perception is a change in system state in response to environmental perturbations in order to maintain stability

Actions are perturbations of the environment by the system

Anticipation requires the system to visit a number of states in its self-constructed perceptionaction state space without committing to the associated actions Desired characteristics PRIMARY DESIRED CHARACTERISTICS

COGNITIVIST COGNITIVE ARCHITECTURES

ADAPTATION

Adaptation usually implies the acquisition of new knowledge

MOTIVATION

Impinge on perception, action and adaption to resolve an impasse

AUTONOMY

Is not necessarily implied

EMERGENT COGNITIVE ARCHITECTURES

Entails a structural alteration or reorganization to effect a new set of dynamics

Enlarge the space of interaction

Autonomy is crucial since cognition is the process whereby an autonomous system becomes viable and effective

COGNITIVIST COGNITIVE ARCHITECTURES	HYBRID SYSTEMS	EMERGENT COGNITIVE ARCHITECTURES
• Soar [Newell et al. 1987]	• CLARION [Sun 2007]	• iCub [Vernon et al. 2010]
• EPIC [Kieras & Meyer 1997]	• ACT-R [Anderson et al. 2004]	 Global Workspace [Shanahan 2006]
 ICARUS [Langley 05, Langley 2006] 	• ACT-R/E [Trafton et al. 2013]	• SASE [Weng 2004]
• GLAIR [Shapiro & Bona 2009]	• KHR [Burghart et al. 2005]	• Darwin [Krichmar et al. 2005]
• CoSy [Hawes & Wyatt 2008]	• LIDA [Franklin et al. 2007, Baars & Franklin 2009]	• Cognitive Affective [Morse et al 2008]
	• PACO-PLUS [Kraft et al. 2008]	

MOTIVATION	ADAPTATION			PERCEPTION	EMBODIMENT	Soar
						Epic ACT-R ICARUS
						ADAPT GLAIR
	EME	ERGE	L.			CoSy
						Global Workspace I-C- SDAL
						SASE Darwin
	Í	VBR				Cognitive-Affective
						HUMANOID Cerebus
						Cog: Theory of Mind Kismet
						LIDA CLARION
						PACO-PLUS

405

ARTIFICIAL INTELLIGENCE

There are many aspects and open questions regarding cognition in humans:

Attention Memory Problem solving Decision making Learning Concept formation Embodiment Reasoning Prospection Motivation Planning Language Representation

QUESTIONS?