

LEARNING FROM EXAMPLES

Fabrizio Santini | COMP 131A

VERSION 1.1

- ML paradigms
- Data & discriminate functions
- Supervised learning
- Decision trees
- Questions?

- No human experts
 - Industrial and manufacturing control
 - Mass spectrometer analysis, drug design, astronomic discovery
- Black-box human expertise
 - Face, handwriting, and speech recognition
 - Driving a car, flying a plane
- Rapidly changing phenomena
 - Credit scoring and financial modeling
 - Diagnosis, fraud detection
- Need for customization/personalization
 - Personalized news reader
 - Movie/book recommendation

- There are many types of learning: rote learning, learning by being told, learning from examples, learning by analogy
- Humans tend to learn from past experiences
- A computer **does not have** experiences
- A computer system learns from data, which represent some past experiences of an application domain

Machine learning is to learn a target function that can be used to predict the values of a discrete class attribute, e.g., approve or not-approved, and high-risk or low risk.

Machine learning is about predicting the future based on the past.

ML paradigms

SECTION 01

The machine learning framework

The concept is to apply a **prediction function** to a feature (or set of features) to predict a class of belonging:

- Type of feedback:
 - **supervised** (labeled examples)
 - unsupervised (unlabeled examples)
 - reinforcement (reward)
- Representation:
 - attribute-based (feature vector)
 - relational (first-order logic)
- Use of knowledge
 - empirical (knowledge-free)
 - analytical (knowledge-guided)

- The design of a ML system is affected by:
 - **Performance element used:** utilitybased agent, reactive agent, logical agent
 - Functional component to be learned: classifier, evaluation function, perception-action function
 - Representation of functional component: weighted linear function, logical theory, HMM
 - Feedback available: correct action, reward, relative preferences

ARTIFICIAL INTELLIGENCE Supervised learning

Supervised learning finds a prediction function given **features** and **associated labels**. The prediction function is used to **predict** the label of features **never seen:**

Supervised learning CLASSIFICATION, REGRESSION AND RANKING

Classification: a finite set of labels

Regression: label is real-valued

Ranking: label is a ranking

Classification

- Face recognition
- Low-risk and high-risk loans
- Character recognition
- Spam detection
- Medical diagnosis: From symptoms to illnesses
- Biometrics: Recognition and authentication using physical and/or behavioral characteristics: Face, iris, signature, etc

Regression

- Economics/Finance: predict the value of a stock
- Epidemiology
- Car/plane navigation: angle of the steering wheel, acceleration, ...
- Temporal trends: weather over time
- Price of a used car

Ranking

- Netflix movie queue ranking
- iTunes
- Flight search
- Web pages ranking

ARTIFICIAL INTELLIGENCE Unsupervise

Unsupervised learning

Unsupervised learning finds a prediction function given **features** without **associated labels**. The prediction function is used to **cluster or group** the label of features **never seen:**

- Customer segmentation/grouping
- Image compression
- Bioinformatics: learn motifs
- Dimensionality reduction

ARTIFICIAL INTELLIGENCE | Reinforceme

Reinforcement learning

Reinforcement learning learns what action to take in a **sequence** of **examples or states** to maximize a **reward** after completing that sequence.

BACKGAMMON

DATA & DISCRIMINATE FUNCTIONS

The data and the goal vector REPRESENTATION

Data: A set of data records (also called examples, instances or cases) described by:

- *k* attributes: *A*₁, *A*₂, ... *Ak*
- a *class*: each example is labelled with a pre-defined class.

 $f(X) = f(x_1, x_2) = w_0 + w_1 x_1 + w_2 x_2$

Discriminate function

A **discriminate function** divides the space in areas that belong to different classes.

CLASS CLUSTER 1 $f(X) > 0 \rightarrow class 1$ X_2 f(X) = 0 $f(X) < 0 \rightarrow class 2$ **CLASS CLUSTER 2** f(X) = WX = 0 will allow $-W_0/W_2$ ATTRIBUTE SPACE you to discriminate class A from B. The problem is that we do not know the $X = [x_1, x_2]$ appropriate values for w_0 , X_1 *w*₁, *w*₂.

Features

Features can be anything:

- Raw pixels
- Level of savings
- Histograms
- Income
- Price
- Descriptors

Supervised learning

SECTION 03

Supervised learning

- Training (or learning): Learn a model using the training data to minimize the prediction error of the discriminate function f
- Testing: Using unseen test data, assess the model accuracy applying *f* to never before testing data

Given:

- a data set D
- a task T
- a performance measure M

A computer system is said to **learn** from D to perform the task T if after learning the system's performance on T improves as measured by M.

TRAINING PHASE

Supervised learning

Training set: It is a set of labeled examples {(x1, y1), ··· , (xN, yN)}, used in the training phase

Testing set: It is a set of labeled examples {(x1, y1), ··· , (xN, yN)}, never used in the training phase

 $Accuracy = \frac{Number \ of \ correct \ classifications}{Total \ number \ of \ test \ cases}$

In other words, the **learned model** helps the system to perform *T* **better** as compared to no learning.

Decision trees

SECTION 04

Should a loan to be issues to a person?

ID	AGE	HAS JOB	OWNS HOUSE	CREDIT RATING	LOAN?
1	Young	False	False	Fair	No
2	Young	False	False	Excellent	No
3	Young	True	False	Good	Yes
4	Young	True	True	Good	Yes
5	Young	False	False	Fair	No
6	Middle	False	False	Fair	No
7	Middle	False	False	Good	No
8	Middle	True	True	Good	Yes
9	Middle	False	True	Excellent	Yes
10	Middle	False	True	Excellent	Yes
11	Old	False	True	Excellent	Yes
12	Old	False	True	Good	Yes
13	Old	True	False	Good	Yes
14	Old	True	False	Excellent	Yes
15	Old	False	False	Fair	No

Decision tree learning is one of the most widely used techniques for classification. The **classification model** is a **tree**, called **decision tree**:

- The classification accuracy is competitive with other methods
- It is very efficient

The basic idea is to **recursively partition** the training set according to the **most important** attribute (category or continuous values) of the examples.

- Decision trees are not unique
- Finding the best tree is NP-hard
- All current tree building algorithms are heuristic algorithms

A greedy divide-and-conquer algorithm:

- At start, all the training examples are at the root
- Examples are partitioned recursively based on selected attributes
- Attributes are selected on the basis of an information gain

Conditions for stopping:

- All examples for a given node belong to the same class
- There are no remaining attributes for further partitioning – majority class is the leaf
- There are no examples left

1	<pre>function DT-learning(EXAMPLES, ATTRIBUTES, P-EXAMPLES)</pre>
2	return TREE
3	if EXAMPLES is empty then
4	return PLURALITY-VALUE(P-EXAMPLES)
5	else if all EXAMPLES have the same classification then
б	return the classification
7	else if ATTRIBUTES is empty then
8	return PLURALITY-VALUE(EXAMPLES)
9	else
10	$A = argmax_{a \in attributes}$ Importance (a, EXAMPLES)
11	tree = a new decision tree with root test A
12	for each value v_k of A do
13	exs = $\{e : e \in examples \land e. A = v_k\}$
14	<pre>subtree = DT-learning(exs, ATTRIBUTES - A, EXAMPLES)</pre>
15	add subtree to tree with label $(A = v_k)$
16	return tree

Decision Tree INDUCTION: ATTRIBUTE SELECTION

In order to branch the tree, we choose the attribute according to the principal of **information** gain:

- Entropy: impurity of a set of examples (E = 0 for a perfectly homogeneous)
- Information gain: expected reduction in entropy caused by partitioning

Intuitively a **good attribute** splits the examples into subsets that are (ideally) all positive or all negative.

Decision trees FROM A DECISION TREE TO A SET OF RULES

- A decision tree can be converted to a set of rules
- Each path from the root to a leaf is a rule:

Own_house = **TRUE** \rightarrow CLASS = **YES** Own_house = **FALSE** \land Has_job = **TRUE** \rightarrow CLASS = **YES** Own_house = **FALSE** \land Has_job = **FALSE** \rightarrow CLASS = **NO**

Information theory provides a mathematical basis for measuring the information content.

- Information theory measures the added value of information
 - With a fair coin, there is no information about the result of the tossing, so any prior information to the event is extremely valuable
 - With a rigged coin, the information is much less valuable
- Information theory uses **bits** to measure information content
- One bit of information is enough to answer a yes/no question about which one has no idea

Information theory ENTROPY MEASURE

- Entropy is defined as:
 - *P*(*c_i*) is the probability of class *c_i* in data set D
 - We use entropy as a measure of impurity or disorder of data set D. (Or, a measure of information in a tree)

$$E(D) = -\sum_{i=1}^{|C|} P(c_i) \log_2 P(c_i)$$

 $P(c_i) = 1$

Example:

A data set D has **50%** positive examples (P(positive) = 0.5) and **50%** negative examples (P(negative) = 0.5): $E(D) = -0.5 \times \log_2 0.5 - 0.5 \times \log_2 0.5 = 1$

A data set D has **20%** positive examples (P(positive) = 0.2) and **80%** negative examples (P(negative) = 0.8): $E(D) = -0.2 \times \log_2 0.2 - 0.8 \times \log_2 0.8 = 0.722$

A data set D has **100%** positive examples (P(positive) = 1.0) and **no** negative examples (P(negative) = 0): $E(D) = -1.0 \times \log_2 1.0 - 0 \times \log_2 0 = 1$

As the data includes **more examples of the same sign** (it becomes purer), the entropy value **becomes smaller**. Information theory **INFORMATION GAIN**

- Given a set of examples D We compute its entropy: $E(D) = -\sum_{i=1}^{|C|} P(c_i) \log_2 P(c_i)$
 - Selecting the attribute A_i will partition D into subsets D_1 , D_2 ,..., D_v . For A_i , the estimated entropy is:

$$E_{A_i}(D) = \sum_{i=1}^{\nu} \frac{|D_i|}{|D|} E(D_i)$$

• The **information gained** by selecting A_i to partition the data is:

$$gain(D, A_i) = E(D) - E_{A_i}(D)$$

Choose the attribute A_i with **maximum information gain** •

Should a loan to be issues to a person?

ID	AGE	HAS JOB	OWNS HOUSE	CREDIT RATING	LOAN?
1	Young	False	False	Fair	No
2	Young	False	False	Excellent	No
3	Young	True	False	Good	Yes
4	Young	True	True	Good	Yes
5	Young	False	False	Fair	No
6	Middle	False	False	Fair	No
7	Middle	False	False	Good	No
8	Middle	True	True	Good	Yes
9	Middle	False	True	Excellent	Yes
10	Middle	False	True	Excellent	Yes
11	Old	False	True	Excellent	Yes
12	Old	False	True	Good	Yes
13	Old	True	False	Good	Yes
14	Old	True	False	Excellent	Yes
15	Old	False	False	Fair	No
	6	6	9 9		

$$E(D) = -\frac{6}{15} \times \log_2 \frac{6}{15} - \frac{9}{15} \times \log_2 \frac{9}{15} = 0.971$$

 $E_{Owns_house}(D) = \frac{6}{15} E(D_1) + \frac{9}{15} E(D_2) = 0.551$ $Owns = T \quad D_{1NO} = \{\} D_{1YES} = \{4, 8, 9, 10, 11, 12\} E(D_1) = 0$ $Owns = F \quad D_{2NO} = \{1, 2, 5, 6, 7, 15\} D_{2YES} = \{3, 13, 14\} E(D_2) = 0.918$

$$E_{Age}(D) = \frac{5}{15} E(D_3) + \frac{5}{15} E(D_4) + \frac{5}{15} E(D_5) = 0.888$$

 $\begin{array}{ll} Age = \text{Young} & D_{3 \ NO} = \{1,2,5\} \ D_{3 \ YES} = \{3,4\} \ E(D_3) = 0.971 \\ \\ Age = \text{Middle} & D_{4 \ NO} = \{6,7\} \ D_{4 \ YES} = \{8,9,10\} \ E(D_4) = 0.971 \\ \\ Age = \text{Old} & D_{5 \ NO} = \{15\} \ D_{5 \ YES} = \{11,12,13,14\} \ E(D_5) = 0.722 \end{array}$

 $E_{Has_{job}}(D) = 0.647$ $E_{Credit_{rating}}(D) = 0.608$

gain(D, Age) = 0.971 - 0.888 = 0.083 $gain(D, Owns_house) = 0.420$ $gain(D, Has_job) = 0.324$ $gain(D, Credit_rating) = 0.363$

Decision trees HANDLING CONTINUOUS ATTRIBUTES

- One can handle continuous values attributes by splitting into two (or more) intervals at each node
- How to find the best threshold to divide?
 - Use information gain or gain ratio again
 - Sort all the values of an continuous attribute in increasing order {v₁, v₂, ..., v_r}
 - Select one threshold between two adjacent values v_i and v_{i_+1} . Try all possible thresholds and find the one that maximizes the gain (or gain ratio)

• Overfitting: A tree may overfit the training data

- The accuracy is very good on training data but poor on test data
- The tree too deep and too many branches, some may reflect anomalies due to noise or outliers

Two approaches to avoid overfitting:

- Pre-pruning: Halt tree construction early. It is difficult to decide because we do not know what may happen subsequently if we keep growing the tree
- Post-pruning: Remove branches or sub-trees from a fully formed tree. Statistical methods can be used to estimates the errors at each node for pruning

QUESTIONS?