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Non-linear decision boundaries
Linear models can only produce linear 
decision boundaries

Real world data often needs a non-linear 
decision boundary
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Example: X-OR. 
AND and OR can be generated with a single perceptron
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Example: X-OR
X-OR a Non-linear separable problem can not be 
generated with a single perceptron
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Example: X-OR.  However…..
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Example: X-OR.  Finally
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-Output Layer

2-2-1 Fully connected topology
(all neurons in a layer connected
Connected to all neurons in the
following layer)



Another Example: Star Region (Univ. Texas)



Neural networks
A neural network is simply a composition of
simple neurons into several layers

Each neuron simply computes a linear 
combination of its inputs, adds a bias, and 
passes the result through an activation 
function

The network can contain one or more hidden 
layers. The outputs of these hidden layers can 
be thought of as a new representation of the 
data (new features).

The final output is the target variable (y = fθ(x))



Multilayer perceptrons
When each node in each layer is a linear 
combination of all inputs from the previous 
layer then the network is called a multilayer 
perceptron (MLP)

Weights can be organized into matrices. 

Forward pass computes
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MNIST Example
Handwritten digits
• 60.000 training examples

• 10.000 test examples

• 10 classes (digits 0-9)

• 28x28 grayscale images(784 pixels)

• http://yann.lecun.com/exdb/mnist/

The objective is to learn a function that predicts the digit from the image



MNIST Example
Model
• 3 layer neural-network ( 2 hidden layers)

• Tanh units (activation function)

• 512-512-10

• Softmax on top layer

• Cross entropy Loss



MNIST Example
Training
• 40 epochs using min-batch SGD

• Batch Size: 128

• Leaning Rate: 0.1 (fixed)

• Takes 5 minutes to train on GPU

Accuracy Results
• 98.12% (188 errors in 10.000 test examples)

there are ways to improve accuracy…

Metrics

𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 =
𝑻𝑷 + 𝑻𝑵

𝑻𝑷 + 𝑻𝑵+𝑭𝑷+ 𝑭𝑵

there are other metrics….



Training
• Estimate parameters 𝜃(W(k), b(k)) from training examples given a Loss Function

𝑊 ∗= 𝑎𝑟𝑔𝑚𝑖𝑛Kℒ 𝑓K 𝑥 ,𝑦

• Iteratively adapt each parameter

Basic idea: gradient descent. 

• Dependencies are very complex.

Global minimum: challenging. Local minima: can be good enough.

• Initialization influences in the solutions.



Training
• Gradient Descent: Move the parameter 𝜃Oin small steps in the direction opposite sign of the

derivative of the loss with respect j.

𝜃(P) = 𝜃(PQ") − 𝛼(PQ") S 𝛻Kℒ(𝑦, 𝑓K 𝑥 )

• Stochastic gradient descent (SGD): estimate the gradient with one sample, or better, with a 
minibatch of examples.

• Momentum: the movement direction of parameters averages the gradient estimation with
previous ones. 

• Several strategies have been proposed to update the weights: Adam, RMSProp, Adamax, etc. 
known as: optimizers



Training MLPs

With Multiple Layer Perceptrons we need to find the gradient of the loss function with respect to all the 
parameters of the model (W(k), b(k))

These can be found using the chain rule of differentiation. 

The calculations reveal that the gradient wrt the parameters in layer k only depends on the error from the 
above layer and the output from the layer below. 

This means that the gradients for each layer can be computed iteratively, starting at the last layer and 
propagating the error back through the network. This is known as the backpropagation algorithm. 


