
Day 1 Lecture 4

Multilayer Perceptron

Elisa Sayrol

Acknowledgements: To my colleagues
of this seminar and previous ones

Non-linear decision boundaries
Linear models can only produce linear
decision boundaries

Real world data often needs a non-linear
decision boundary

Images

Audio

Text

Example: X-OR.
AND and OR can be generated with a single perceptron

g

-3

x1

x2

2

2

y1

x1

x2 AND

0
0

1

1

g

-1

x1

x2

2

2

y2

OR

0
0

x2

1

x1

1

𝑦" = 𝑔 𝐰𝑻𝐱 + 𝑏 = 𝑢(2 2 ·
𝑥"
𝑥/

− 3) 𝑦/ = 𝑔 𝐰𝑻𝐱+ 𝑏 = 𝑢(2 2 ·
𝑥"
𝑥/

− 1)

Input vector
(x1,x2)

Class
OR

(0,0) 0

(0,1) 1

(1,0) 1

(1,1) 1

Input vector
(x1,x2)

Class
AND

(0,0) 0

(0,1) 0

(1,0) 0

(1,1) 1

Example: X-OR
X-OR a Non-linear separable problem can not be
generated with a single perceptron

XOR

0
0

x2

1

x1

1

Input vector
(x1,x2)

Class
XOR

(0,0) 0

(0,1) 1

(1,0) 1

(1,1) 0

Example: X-OR. However…..

g

-1

x1

x2

-2

2

h1

x1

x2

0
0

1

1

ℎ" = 𝑔 𝐰𝟏𝟏𝑻 	𝐱+ 𝑏"" = 𝑢(−2 2 ·
𝑥"
𝑥/

− 1)

ℎ/ = 𝑔 𝐰𝟏𝟐𝑻 𝐱+ 𝑏"/ = 𝑢(2 −2 ·
𝑥"
𝑥/

− 1)

g

-1

x1

x2

2

-2

h2

0
0

x2

1

x1

1

𝑦 = 𝑔 𝐰𝟐𝑻 𝐡+ 𝑏/ = 𝑢(2 2 · ℎ"
ℎ/

− 1)

g

-1

h1

h2

2

2

y

0

h2

h1

(0,0)
(1,1)

(0,1)

(1,0)

Example: X-OR. Finally

x1

x2

0
0

1

1

ℎ" = 𝑔 𝐰𝟏𝟏𝑻 	𝐱+ 𝑏"" = 𝑢(−2 2 ·
𝑥"
𝑥/

− 1)

ℎ/ = 𝑔 𝐰𝟏𝟐𝑻 𝐱+ 𝑏"/ = 𝑢(2 −2 ·
𝑥"
𝑥/

− 1)

𝑦 = 𝑔 𝐰𝟐𝑻 𝐡+ 𝑏/ = 𝑢(2 2 · ℎ"
ℎ/

− 1)

g

h1g

-1

x1

x2

2
-2

h2

2

-2

g

-1

Input
layer

Hidden
layer

Output
Layer

y

Three layer Network:

-Input Layer
-Hidden Layer
-Output Layer

2-2-1 Fully connected topology
(all neurons in a layer connected
Connected to all neurons in the
following layer)

Another Example: Star Region (Univ. Texas)

Neural networks
A neural network is simply a composition of
simple neurons into several layers

Each neuron simply computes a linear
combination of its inputs, adds a bias, and
passes the result through an activation
function

The network can contain one or more hidden
layers. The outputs of these hidden layers can
be thought of as a new representation of the
data (new features).

The final output is the target variable (y = fθ(x))

Multilayer perceptrons
When each node in each layer is a linear
combination of all inputs from the previous
layer then the network is called a multilayer
perceptron (MLP)

Weights can be organized into matrices.

Forward pass computes

Depth

Width

𝐡(/)=g(𝑊(/)𝐡(")+𝐛(/))

MNIST Example
Handwritten digits
• 60.000 training examples

• 10.000 test examples

• 10 classes (digits 0-9)

• 28x28 grayscale images(784 pixels)

• http://yann.lecun.com/exdb/mnist/

The objective is to learn a function that predicts the digit from the image

MNIST Example
Model
• 3 layer neural-network (2 hidden layers)

• Tanh units (activation function)

• 512-512-10

• Softmax on top layer

• Cross entropy Loss

MNIST Example
Training
• 40 epochs using min-batch SGD

• Batch Size: 128

• Leaning Rate: 0.1 (fixed)

• Takes 5 minutes to train on GPU

Accuracy Results
• 98.12% (188 errors in 10.000 test examples)

there are ways to improve accuracy…

Metrics

𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 =
𝑻𝑷 + 𝑻𝑵

𝑻𝑷 + 𝑻𝑵+𝑭𝑷+ 𝑭𝑵

there are other metrics….

Training
• Estimate parameters 𝜃(W(k), b(k)) from training examples given a Loss Function

𝑊 ∗= 𝑎𝑟𝑔𝑚𝑖𝑛Kℒ 𝑓K 𝑥 ,𝑦

• Iteratively adapt each parameter

Basic idea: gradient descent.

• Dependencies are very complex.

Global minimum: challenging. Local minima: can be good enough.

• Initialization influences in the solutions.

Training
• Gradient Descent: Move the parameter 𝜃Oin small steps in the direction opposite sign of the

derivative of the loss with respect j.

𝜃(P) = 𝜃(PQ") − 𝛼(PQ") S 𝛻Kℒ(𝑦, 𝑓K 𝑥)

• Stochastic gradient descent (SGD): estimate the gradient with one sample, or better, with a
minibatch of examples.

• Momentum: the movement direction of parameters averages the gradient estimation with
previous ones.

• Several strategies have been proposed to update the weights: Adam, RMSProp, Adamax, etc.
known as: optimizers

Training MLPs

With Multiple Layer Perceptrons we need to find the gradient of the loss function with respect to all the
parameters of the model (W(k), b(k))

These can be found using the chain rule of differentiation.

The calculations reveal that the gradient wrt the parameters in layer k only depends on the error from the
above layer and the output from the layer below.

This means that the gradients for each layer can be computed iteratively, starting at the last layer and
propagating the error back through the network. This is known as the backpropagation algorithm.

