INTRODUCTION TO DEEP LEARNING

Winter School at UPC TelecomBCN Barcelona. 22-30 January 2018.

Day 2 Lecture 3 Loss functions

Universitat Politecnica de Catalunya Technical University of Catalonia

[course site]

• Javier Ruiz Hidalgo

- Email: j.ruiz@upc.edu
- Office: UPC, Campus Nord, D5-008
- Teaching experience
 - Basic signal processing
 - Project based
 - Image processing & computer vision
- Research experience
 - Master on hierarchical image representations by UEA (UK)
 - PhD on video coding by UPC (Spain)
 - Interests in image & video coding, 3D analysis and super-resolution

Outline

• Introduction

- Definition, properties, training process
- Common types of loss functions
 - Regression
 - Classification

Definition

In a supervised deep learning context the **loss function** measures the **quality** of a particular set of parameters based on how well the output of the network **agrees** with the ground truth labels in the training data. Nomenclature

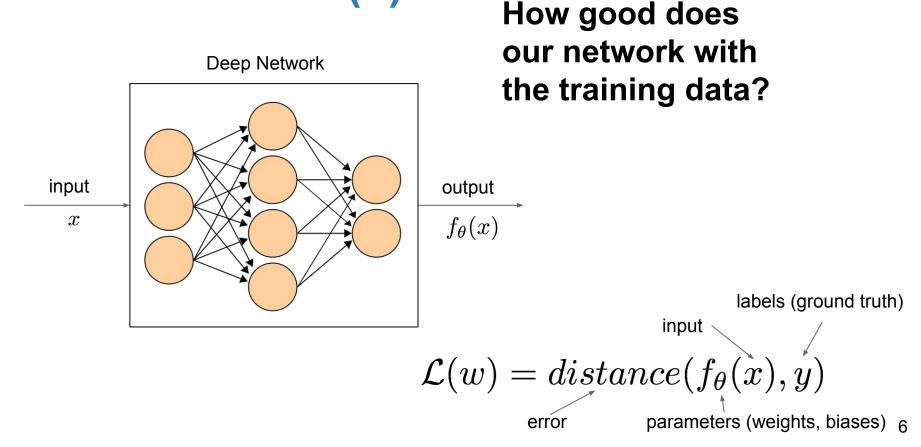
loss function

cost function

objective function

error function

Loss function (1)



Loss function (2)

- The loss function does not want to measure the entire performance of the network against a validation/test dataset.
- The loss function is used to guide the training process in order to find a set of parameters that reduce the value of the loss function.

Training process

Stochastic gradient descent

- Find a set of parameters which make the loss as small as possible.
- Change parameters at a rate determined by the partial derivatives of the loss function:

$\partial \mathcal{L}$	$\partial \mathcal{L}$
$\overline{\partial w}$	∂b

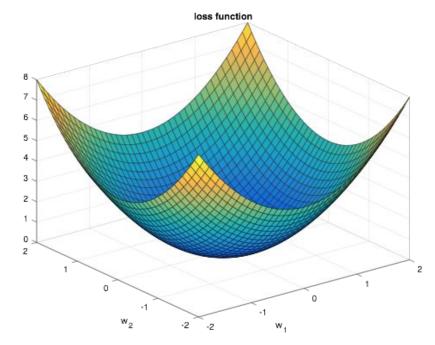
Properties (1)

• Minimum (0 value) when the output of the network is equal to the ground truth data.

Increase value when output differs from ground truth.

Properties (2)

- Ideally \rightarrow convex function
- In reality → many parameters (in the order of millions) not convex



- \circ $\,$ Varies smoothly with changes on the output
 - Better gradients for gradient descent
 - Easy to compute small changes in the parameters to get an improvement in the loss

Outline

- Introduction
 - Definition, properties, training process
- Common types of loss functions
 - Regression
 - Classification

Common types of loss functions (1)

- Loss functions depen on the type of task:
 - Regression: the network predicts continuous, numeric variables
 - Example: Length of fishes in images, temperature from latitude/longitud
 - Absolute value, square error

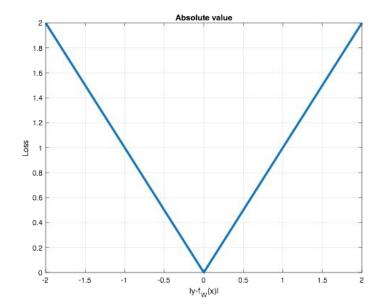
Common types of loss functions (2)

- Loss functions depen on the type of task:
 - Classification: the network predicts categorical variables (fixed number of classes)
 - Example: classify email as spam, predict student grades from essays.
 - hinge loss, Cross-entropy loss

Absolute value, L1-norm

- Very intuitive loss function
 - produces sparser solutions
 - good in high dimensional spaces
 - prediction speed
 - \circ less sensitive to outliers

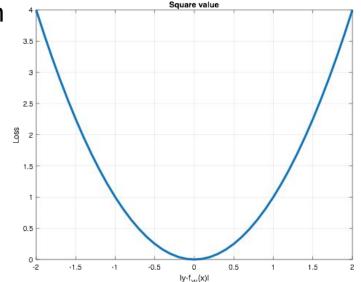
$$\mathcal{L} = \frac{1}{n} \sum_{i=1}^{n} |y_i - f_\theta(x_i)|$$



Square error, Euclidean loss, L2-norm

- Very common loss function
 - More precise and better than L1-norm
 - Penalizes large errors more strongly
 - Sensitive to outliers

$$\mathcal{L} = \frac{1}{n} \sum_{i=1}^{n} (y_i - f_\theta(x_i))^2$$

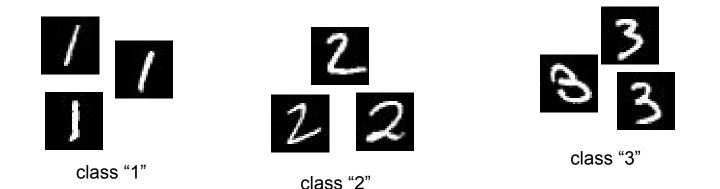


Outline

- Introduction
 - Definition, properties, training process
- Common types of loss functions
 - Regression
 - Classification

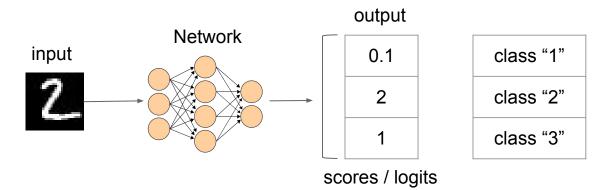
Classification (1)

We want the network to classify the input into a fixed number of classes



Classification (2)

- Each input can have only one label
 - One prediction per output class
 - The network will have "k" outputs (number of classes)

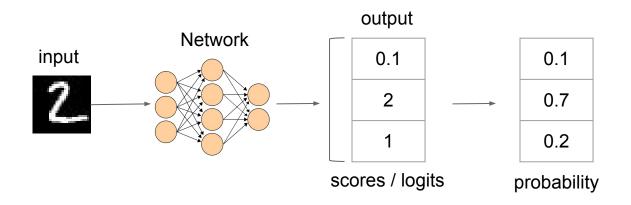


Classification (3)

- How can we create a loss function to improve the scores?
 - Somehow write the labels (ground truth of the data) into a vector \rightarrow One-hot encoding
 - Non-probabilistic interpretation \rightarrow hinge loss
 - \circ Probabilistic interpretation: need to transform the scores into a probability function \rightarrow Softmax

Softmax (1)

- Convert scores into probabilities
 - From 0.0 to 1.0
 - Probability for all classes adds to 1.0

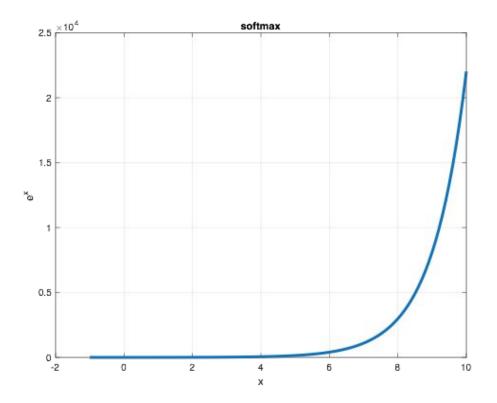


• Softmax function

scores (logits) $- rac{e^{l_i}}{\sum_k e^{l_k}}$ $S(l_i)$

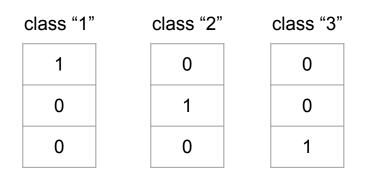


Neural Networks and Deep Learning (softmax)

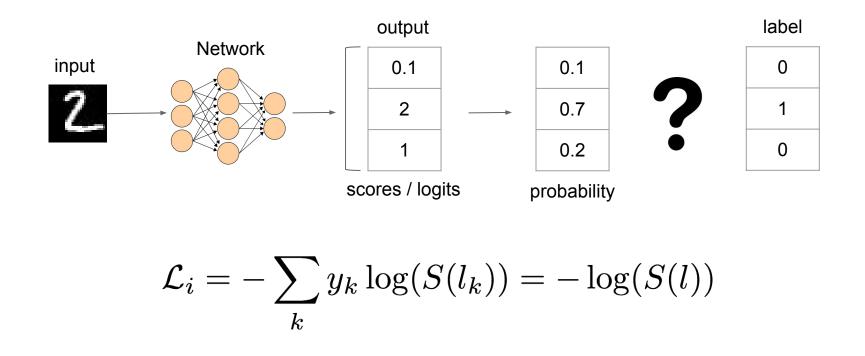


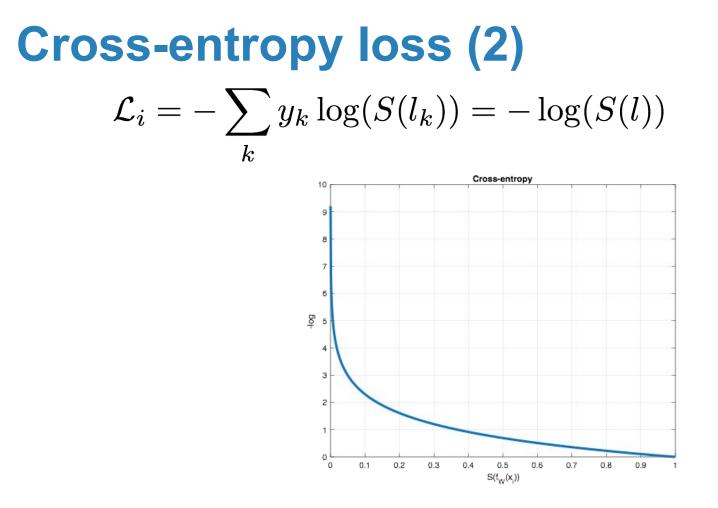
One-hot encoding

- Transform each label into a vector (with only 1 and 0)
 - Length equal to the total number of classes "k"
 - Value of 1 for the correct class and 0 elsewhere



Cross-entropy loss (1)

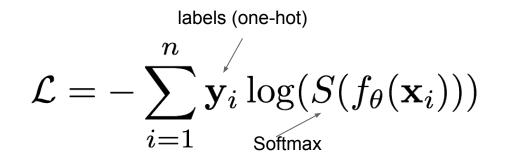




Cross-entropy loss (3)

• For a set of n inputs

$$\mathcal{L} = \frac{1}{n} \sum_{i=1}^{n} \mathcal{L}_i$$



Cross-entropy loss (4)

- In general, cross-entropy loss works better than square error loss:
 - Square error loss usually gives too much emphasis to incorrect outputs.
 - In square error loss, as the output gets closer to either 0.0 or 1.0 the gradients get smaller, the change in weights gets smaller and training is slower.

Regularization

- Control the capacity of the network to prevent overfitting
 - L2-regularization (weight decay):

regularization parameter

$$\mathcal{L}_{new} = \mathcal{L} + rac{\lambda}{2} W^2$$

• L1-regularization:

$$\mathcal{L}_{new} = \mathcal{L} + rac{\lambda}{2}|W|$$

References

- About loss functions
- Neural networks and deep learning
- Are loss functions all the same?
- <u>Convolutional neural networks for Visual Recognition</u>
- Deep learning book, MIT Press, 2016
- On Loss Functions for Deep Neural Networks in Classification

Thanks! Questions?

UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH

Department of Signal Theory and Communications

Image Processing Group

https://imatge.upc.edu/web/people/javier-ruiz-hidalgo