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Me
● Javier Ruiz Hidalgo

○ Email: j.ruiz@upc.edu
○ Office: UPC, Campus Nord, D5-008

● Teaching experience
○ Basic signal processing
○ Project based
○ Image processing & computer vision

● Research experience
○ Master on hierarchical image representations by UEA (UK)
○ PhD on video coding by UPC (Spain)
○ Interests in image & video coding, 3D analysis and super-resolution
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Outline

● Introduction
○ Definition, properties, training process

● Common types of loss functions
○ Regression
○ Classification
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Definition

In a supervised deep learning context the loss 
function measures the quality of a particular 
set of parameters based on how well the output 
of the network agrees with the ground truth 
labels in the training data. 
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Nomenclature
loss function

cost function

objective function

error function 
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Loss function (1)
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How good does 
our network with 
the training data?

labels (ground truth)
input

parameters (weights, biases)error

Deep Network

input output



Loss function (2)

● The loss function does not want to measure 
the entire performance of the network 
against a validation/test dataset. 

● The loss function is used to guide the 
training process in order to find a set of 
parameters that reduce the value of the loss 
function. 
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Training process

Stochastic gradient descent

● Find a set of parameters which make the loss as small 
as possible.

● Change parameters at a rate determined by the partial 
derivatives of the loss function:

8



Properties (1)

● Minimum (0 value) when the output of the 
network is equal to the ground truth data.

● Increase value when output differs from 
ground truth.
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Properties (2)
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● Ideally → convex function
● In reality → many 

parameters (in the order of 
millions) not convex

○ Varies smoothly with changes on the output
■ Better gradients for gradient descent 
■ Easy to compute small changes in the 

parameters to get an improvement in the 
loss



Outline

● Introduction
○ Definition, properties, training process

● Common types of loss functions
○ Regression
○ Classification
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Common types of loss functions (1)

● Loss functions depen on the type of task:
○ Regression: the network predicts continuous, 

numeric variables
■ Example: Length of fishes in images, 

temperature from latitude/longitud
■ Absolute value, square error
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Common types of loss functions (2)

● Loss functions depen on the type of task:
○ Classification: the network predicts categorical 

variables (fixed number of classes)
■ Example: classify email as spam, predict student 

grades from essays.
■ hinge loss, Cross-entropy loss
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Absolute value, L1-norm
● Very intuitive loss function

○ produces sparser solutions
■ good in high dimensional spaces
■ prediction speed

○ less sensitive to outliers
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Square error, Euclidean loss, L2-norm
● Very common loss function

○ More precise and better than L1-norm
○ Penalizes large errors more strongly
○ Sensitive to outliers
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Outline

● Introduction
○ Definition, properties, training process
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Classification (1)

We want the network to classify the input into a 
fixed number of classes
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Classification (2)

● Each input can have only one label
○ One prediction per output class 

■ The network will have “k” outputs (number of 
classes)
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Classification (3)

● How can we create a loss function to 
improve the scores?
○ Somehow write the labels (ground truth of the data) 

into a vector → One-hot encoding
○ Non-probabilistic interpretation → hinge loss
○ Probabilistic interpretation: need to transform the 

scores into a probability function → Softmax
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Softmax (1)

● Convert scores into probabilities
○ From 0.0 to 1.0
○ Probability for all classes adds to 1.0 
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Softmax (2)

● Softmax function 
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Neural Networks and Deep Learning (softmax)

http://neuralnetworksanddeeplearning.com/chap3.html#softmax


22



One-hot encoding

● Transform each label into a vector (with only 1 
and 0) 
○ Length equal to the total number of classes “k”
○ Value of 1 for the correct class and 0 elsewhere
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Cross-entropy loss (1)

24

0.1

2

1

input
Network

output

scores / logits

0.1

0.7

0.2

probability

0

1

0

label



Cross-entropy loss (2)
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Cross-entropy loss (3)

● For a set of n inputs
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Cross-entropy loss (4)

● In general, cross-entropy loss works better than 
square error loss:
○ Square error loss usually gives too much emphasis to 

incorrect outputs. 
○ In square error loss, as the output gets closer to either 0.0 

or 1.0 the gradients get smaller, the change in weights gets 
smaller and training is slower.
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Regularization

● Control the capacity of the network to prevent 
overfitting
○ L2-regularization (weight decay):

○ L1-regularization:
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regularization parameter
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Thanks! Questions?
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