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Me

e Javier Ruiz Hidalgo

o Email: L.ruiz@upc.edu

o Office: UPC, Campus Nord, D5-008
e T[eaching experience

o Basic signal processing

o Project based
o Image processing & computer vision

e Research experience
o Master on hierarchical image representations by UEA (UK)
o PhD on video coding by UPC (Spain)
o Interests in image & video coding, 3D analysis and super-resolution
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Definition

In a supervised deep learning context the loss
function measures the quality of a particular
set of parameters based on how well the output
of the network agrees with the ground truth
labels in the training data.



Nomenclature

loss function
cost function
) objective function

error function



Loss function (1)
How good does

our network with
the training data?

Deep Network

input output

v fo()

labels (ground truth)

input \ /
L(w) = @tance(fg(fﬂ), y)

error parameters (weights, biases) g




Loss function (2)

e The loss function does not want to measure
the entire performance of the network
against a validation/test dataset.

e The loss function is used to guide the
training process in order to find a set of
parameters that reduce the value of the loss
function.



Training process

Stochastic gradient descent

e Find a set of parameters which make the loss as small

as possible.
e (Change parameters at a rate determined by the partial

derivatives of the loss function:
0L OL

ow Ob



Properties (1)

e Minimum (O value) when the output of the
network is equal to the ground truth data.

e Increase value when output differs from
ground truth.



Properties (2)

e |deally — convex function
e In reality — many
parameters (in the order of

Mo - P (& L & [~} | =]

millions) not convex

o Varies smoothly with changes on the output
m Better gradients for gradient descent
m Easy to compute small changes in the
parameters to get an improvement in the
loss
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Common types of loss functions (1)

e Loss functions depen on the type of task:
o Regression: the network predicts continuous,
numeric variables
m Example: Length of fishes in images,
temperature from latitude/longitud
m Absolute value, square error
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Common types of loss functions (2)

e Loss functions depen on the type of task:
o Classification: the network predicts categorical
variables (fixed number of classes)
m Example: classify email as spam, predict student
grades from essays.
m hinge loss, Cross-entropy loss
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Absolute value, L1-norm

e \Very intuitive loss function

Abselute value
T T

o produces sparser solutions
m good in high dimensional spaces
m prediction speed

o less sensitive to outliers

L= =" lyi— folas)
1=1

Iy, ()1
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Square error, Euclidean loss, L2-norm

e Very common loss function

Square value

o More precise and better than L1-norm
o Penalizes large errors more strongly
o Sensitive to outliers

n
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Classification (1)

We want the network to classify the input into a
fixed number of classes

S
=] EY
J :

class “3”

class “1” .
class “2
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Classification (2)

e Each input can have only one label
o One prediction per output class
m [he network will have “kK” outputs (number of
classes)

output
Network —

input 0.1 class “1”
m - . 2 class “2”
1 class “3”

scores / logits
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Classification (3) 9

e How can we create a loss function to o

Improve the scores?

o Somehow write the labels (ground truth of the data)
into a vector — One-hot encoding

o Non-probabilistic interpretation — hinge loss

o Probabilistic interpretation: need to transform the
scores into a probability function — Softmax
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Softmax (1)

e Convert scores into probabilities

o From0.0t0 1.0
o Probability for all classes adds to 1.0

output
Network —

input 0.1 0.1
1 0.2

scores / logits probability
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Softmax (2)

e Softmax function

Network

a

Neural Networks and Deep Learning (softmax)

scores (logits)

Ls

Sy = _°
) = 2k €

output
B 0.1 0.1
2 — 0.7
1 0.2
;cores / logits probability
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http://neuralnetworksanddeeplearning.com/chap3.html#softmax

softmax

1.5F

0.5 F
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One-hot encoding

e Transform each label into a vector (with only 1
and 0)

o Length equal to the total number of classes “k”
o Value of 1 for the correct class and 0 elsewhere

class “1” class “2” class “3”
1 0 0
0 1 0
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Cross-entropy loss (1)

output
Network —

input 0.1
E—_A - 2 -
1

scores / logits

Li=—) yrlog(S(lk)) = —

label
0
?
® 0

probability

log(5(1))
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Cross-entropy loss (2)
Li=—> yrlog(S(k)) = —log(S(1))

Cross-entropy
T T

4 0.5 ol
St ()}

25



Cross-entropy loss (3)

. 1
e For asetof ninputs ﬁzazﬁi

labels (one hot)

Zyzlog S(fo(xi)))

Softmax
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Cross-entropy loss (4)

e |n general, cross-entropy loss works better than

square error loss:

O Square error loss usually gives too much emphasis to

incorrect outputs.

o |In square error loss, as the output gets closer to either 0.0
or 1.0 the gradients get smaller, the change in weights gets
smaller and training is slower.
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Regularization

e Control the capacity of the network to prevent

overfitting
o L2-regularization (weight decay): feg“'afiza“/o“ parameter
A
Lnew = L+ §W2

o L1-regularization:

A
‘Cnew — E —|— §|W|
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Thanks! Questions?
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