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Lecture Plan

• What are Neural Networks?
• What is Deep Learning?
• Why go Deep?
• What are the different models for deep learning

– CNN
– Transfer Learning
– Representation Learning (Auto-encoders)
– RNN/LSTM
– ResNet
– GANs

• Non-Neural Deep Learning
– Multilayer Kernel Machines

• Applications
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Neural Networks

• An abstraction of the biological neuron
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Deep Learning
• Traditional machine learning 

focuses on feature engineering
• Deep learning is a branch of

machine learning
– That uses a cascade of many layers 

of non-linear units for feature 
extraction and transformation

– Based on “automatic” learning of 
multiple levels of features or 
representations of the data

• Re-branding of neural networks!
– Massive growth in efficient 

algorithms for solving AI 
challenges!

• Many Applications in Biomedical 
Informatics
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Artificial Intelligence

Machine Learning

Representation Learning

Deep Learning

Rule Based Systems 

A*

SVM

PCA

Correlation Filters

Shallow Neural Networks

ICA

Clustering Methods

Auto-encoders, DBN

Multilayer Kernels

CNN, DNN, RNN
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Multilayer Perceptron

• Consists of multiple layers of neurons

• Layers of units other than the input and 
output are called hidden units

• Unidirectional weight connections and 
biases

• Activation functions

– Use of activation functions
• Sigmoidal activations

• Nonlinear Operation: Ability to solve 
practical problems

• Differentiable: Makes theoretical 
assessment easier

• Derivative can be expressed in terms of 
functions themselves: Computational 
Efficiency

– Activation function is the same for all 
neurons in the same layer

– Input layer just passes on the signal 
without processing (linear operation)
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Architecture: Activation functions
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Training

• During training we are presented with input patterns 
and their targets

• At the output layer we can compute the error 
between the targets and actual output and use it to 
compute weight updates through the Delta Rule

• But the Error cannot be calculated at the hidden input 
as their targets are not known

• Therefore we propagate the error at the output units 
to the hidden units to find the required weight 
changes (Backpropagation)

• 3 Stages
– Feed-forward of the input training pattern
– Calculation and Backpropagation of the 

associated error
– Weight Adjustment

• Based on minimization of SSE (Sum of Square Errors)
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Backpropagation training cycle

Feed forward

BackpropagationWeight Update
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Proof for the Learning Rule

Change in wjk affects only Yk

Use of Gradient Descent Minimization
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Proof for the Learning Rule…

Change in vij affects all Y1..m

Change in vij affects only zj

Use of Gradient Descent Minimization
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Training Algorithm

xi

zj

yk
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Training Algorithm…

δk
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Training Algorithm…

δj
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Training Algorithm…
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Optimization in minibatches

• We can do a full scale optimization across all 
examples or take a few examples at a time to 
determine the gradients

– Mini-batches
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Things to note

• A large number of derivatives will be computed
– For every input
– For every weight at every layer

• The update is dependent upon
• The activation function value
• The input
• The target
• The current weight value
• The value of the derivative of the activation function of the 

current layer
• The value of the derivative of the activation function of the 

following layers
• The derivatives are multiplied
• The error value
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Parameter Selection

• A MLP has a large number of parameters
– Number of Neurons in Each Layer

– Number of Layers

– Activation Function for each neuron: ReLU, logsig…

– Layer Connectivity: Dense, Dropout…

– Objective function
• Loss Function: MSE, Entropy, Hinge loss, …

• Regularization: L1, L2…

– Optimization Method
• SGD, ADAM, RMSProp, LM …

– Parameters for the Optimization method
• Weight initialization

• Momentum, weight decay, etc.
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