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Transformations

* Transformations can be used to make the data
linearly separable

* But it may not always be possible to find a
transformation

— Use a soft-SVM
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Another look at the SVM
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 We can replace the dot product x®" x0) with:
— a generalized dot product (inner product)
. (x® x0) = ¢(x(i))T¢(x(i))
e Advantage: can implement feature transformations
— or a function (called the kernel function)
* K;j = K(i,j)

* Advantage: No need for explicit feature representation
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From Transforms to Kernels

* For the XOR problem we defined the transformation

X4 (x1)?
° — 2
¢( xzD (x2)
N
* Let’s compute the dot product of two examples in the transformed space
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 Theinner product (dot product) in the transform space is the square of the dot product
of the original space

* Thisis the polynomial kernel of degree 2

. k(i)) = ((x(i))T(x(i)))z
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 What are the kernels corresponding to the

transform?
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Replacement with a feature transformation

* For the XOR problem we defined the transformation

- o(CD-|

xle
 We can thus define an inner product
X
%)
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* This inner product implements the transformation and
can potentially lead to a non-linear boundary

— (x®,xD) = p(x®) p(xD) = [x® O xOx?]
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Kernel Functions € Feature Transformation

Since (x(i), x(i)) is always a scalar, we can actually use a function
(called a kernel function k(i, j)) to map the two examples to a scalar
value

— Thus, the inner product from a feature transformation can be
written as a kernel and a valid kernel function can thus be

considered as an inner product in some feature space (proven by
Moore-Aronszajn Theorem)

 We'll talk what makes kernel valid later
— A kernel is thus a generalized dot product

* A measure of how similar the two examples are
— not of whether they belong to the same class
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Kernels as Similarity Functions

 We have been saying that kernels are similarity
functions — here is how

— Example
* For K(x,y) =(x,y) =x"y
* For the dot product, the associated distance measure is
—dx,y)? =|lx-yl?=(x-»NTx-y) =x"x-2xTy +
y'y = lxlI* + llyll* — 2x"y
— This implies: K(x,y) = 5 (lll|? + [Iyl|? — d(x,y))

— Thus, the linear kernel measures the similarity between two
points as the inverse of the square of the Euclidean distance
between them (up to ||x]|% + ||y|?)

» Thus the SVM with a linear kernel is no different, in its
distance measurements, from a nearest neighbor classifier!!
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Some kernel functions

 We can use arbitrary kernels, for example ...
— The dot-product kernel
 K(a,b) =a’b
— Feature transform: ¢(a) = a
— The homogenous polynomial kernels

 K(ab) = (aTb)p,p is called degree

a
— Forp = 2and 2D data, a = [a;]z $(a) =| a5

— The Radial Basis Function (RBF) Kernel

_lla—b|%
« K(a,b) =e 242 , 0 controls the spread of the Gaussian

— Feature transform?

* The RBF and Homogenous Polynomial kernels implement non-linear boundaries
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Solving the XOR

e C=1
* With polynomial kernel of degree 2

15
1
~ 405
- -0
0.t
-1
1.
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Solving the XOR

¢ C=1
* With RBF Kernel (sigma = 0.5)

0.8
0.6
= 404
- 40.2
0
L 402
0.4
-0.6
0.8
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Solving the XOR

¢ C=1
* With RBF Kernel (sigma = 0.3)

- |
0.6

- 0.4

= 0.2
= -0

= --0.:

-0.¢
-0.¢
-0.¢
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3D Plot
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Another advantage
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* Once we replace the dot product with a kernel function (i.e., perform the

kernel trick or ‘kernelize’ the formulation), the above formulation no
longer requires any features!

* Aslongas you have a kernel function, everything works

— Remember a kernel function is simply a mapping from two examples
to a scalar
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But how is that an advantage?

* When the number of dimensions is very large, an implicit
representation through a kernel is helpful

* Let’s say we have a document classification problem

— We define a M-dimensional feature vector for each
document that indicates if it has any of the pre-specified
number of words in it (1) or not (0)

— M can be very large

— The dot product of two feature vectors is equal to the
number of common words between the two documents

— Why not simply count the number of words?

e We can now do that with the kernel trick
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Kernel Trick

* You can develop a ‘kernelized’ version of the

soft-SVM as well
* Advantage

— Removes the explicit representation of data

— Allows non-linear boundaries

* For understanding a ‘valid’ kernel, we need to
introduce the concept of a kernel matrix

CIS 529: Bioinformatics

PIEAS Biomedical Informatics Research Lab

16



Kernel Matrix

+ rorx® = [g] +® =[] 5@ = o] 20 =[]

1
With the kernel: k(i, j) = xfi)xfj) + xéi)xgj) + xl(i)xéi)xfj)xéj)
- k(1,1) =0
- k(1,2) =0 0|0 |0 |0
— . 01 |0 |1
*  We get this matrix 0o lo |1 1
- Kij=k@)) 01 (1|3

— If you know the kernel matrix you don’t need to know the original features
anymore
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Modification Due to Kernel Function

* Change all inner products to kernel functions
* For training,

n 1 T
max. W(a) = Y o= > oYy K (x4, %)
i=1 i=1,j=1

(L
subject to C' > a; >0, > oyy; =0
i=1
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Modification Due to Kernel Function

* For testing, the new data z is classified as class
1if f>0, and as class 2 if f <0

S
W — Z Odtjytjgb(xtj)
=1

F= (wed(@) +b= Y o K(xi,2) + b
—1

J
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The discriminant function

* For a test object z, the discriminant function
essentially is a weighted sum of the similarity
between z and a pre-selected set of objects
(the support vectors)

f(z) = > oy;K(z,x;) +b

x; €S8
S : the set of support vectors
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Vectorization

* |f we define the following:

- a=la @ an]’

- y=D1 ¥ yn]*

- acy=[ay1 a2 anyn]’
* o to mean element wise product

— Hadamard product

- 1y=[1 1 .. 1]7

- Xaxwy =[x1 X - %]
* This implies: K = XTX

CIS 529: Bioinformatics

maxy, 17 a — % (aoy)'X"X(aoy)
Subject to:

max, 17a — % (@aoy)TK(aoy)
Subject to:

Cra>=0
y T a = O Notice that there isn’t
any data related term
here
This replacement of the
dot product with the
kernel is called the
K kernel trick /
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What is the behavior of an inner product?

e Definition of an inner product

— Symmetry: (x,y) = (y, x)
— Linearity: (ax + By, z) = alx, z) + [{y, z)

* Principle of superposition

— Positive Definiteness
e (x,x)=>0
e (x,x)=0iffx=0

* These conditions need to be satisfied by the
kernel function too
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Positive Semi Definite Kernels: Mercer’s conditions

* In general a kernel is any ‘similarity measure’, however not every similarity
function allows us to use the ‘kernel trick’

e |f a function k results in a symmetric positive semi definite matrix of size n
X n over the given data set, then we can use the kernel trick

— k:xy X x —» Ris SPSD iff
— Symmetric: k(x,-, x]-) = k(x-, x,-)
— And for any choice of n (n > 0) objects x,, x,, ..., X, and any choice of
real numbers ¢, c,, ...,

33 ) =

i=1 =1
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Kernel Matrix

e What’s the kernel matrix for |° [0 [0 |0
this problem with the linear | | [°|?
kernel? kb

O |1 (1 |2
O [0 |0 |0
O |1 (0 |1

* With the polynomial kernel 0 |o |11

(p:Z)? 0 (1 1 |4
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Conditions for a function to be a kernel
* A kernel function must satisfy Mercer’s

condition

— The kernel matrix must be symmetric positive

semi-definite
— What does that mean?

¢ K(x®,x®) = K(x®, xD)

* yYIKy > 0foranyy

— The Eigen-values of K must be non-negative

0 0 0 0 Dimensions: 2 0 0
Since we have 4 points, there
exist labelings for which the

0 1 0 1 classification problem is not 0 1

linearly separable

0 (0|1 |1 0 |o
Eigen Values

O |1 1 |2 0,0,13 0 |1

Dimensions: 3
Since we have 4 points, these
points will always be separable in
the corresponding feature space
no matter how you label them or
where you put them!

Eigen Values
0,0.26,1, 3.73
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Example: Kernel

lu—v||%

 K(u,v) =e 242

* The kernel matrix is (for % = 0.5):

1 1 2

2 1

1

2 1 1

1 e
e 1|1

e e
e e

e e

e e
2 |1 e—1

e |1

* Eigenvalues are 1.93, 0.73, 0.47, 0.86
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| get why we need symmetry but PSD?

* |n the hard-SVM optimization problem we
have:

max, 17 a — % (aoy)'K(aoy)
Subject to:

* |f we aren’t careful in choosing K, this problem
may have no solution
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Kernel Construction

Proposition 3.22 (Closure properties) Let vy and ko be kernels over
X x X, X CTR"”, acRt, f(-) a real-valued function on X, ¢: X — RY
with ks a Icemei over RN » RN, and B a symmetric positive semi-definite
n % n matriz. Then the following functions are kernels:

(1) K(X.2) = K1(X.Z2) + Ka(X, Z),
(11) k(xX.Z) = ar1(X, Z),
(111) RIX,Z2) = KX, Z)ko(X, Z),
(v) k(x,2z) = f(x)f(z),

(v) k(x,2z) =k ( (K) ¢(z)),

(vi) k(x,z)=x'B

Proposition 3.24 Let k1(x.2z) be a kernel over X « X, wherex, z € X, and
plx) is a polynomial with positive coefficients. Then the following functions
are also kernels:

(lj H[K!Z) ZPEHI(K!Z”!
(1) r(x, z) =exp(r1(x,z)).

K!
(iii) r(x,z) =exp(— [Ix — z|* /(20%)).
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Using the SVM

e Read:

 Ben-Hur, Asa, and Jason Weston. 2010. “A User’s Guide
to Support Vector Machines.” In Data Mining
Techniques for the Life Sciences, edited by Oliviero
Carugo and Frank Eisenhaber, 223—-39. Methods in
Molecular Biology 609. Humana Press.
http://dx.doi.org/10.1007/978-1-60327-241-4 13

* http://pyml.sourceforge.net/doc/howto.pdf
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Steps for Feature based Classification

* Prepare the pattern matrix
e Select the kernel function to use

e Select the parameter of the kernel function and
the value of C

— You can use the values suggested by the SVM
software, or you can set apart a validation set to
determine the values of the parameter

* Execute the training algorithm and obtain the o,

* Unseen data can be classified using the o, and the
support vectors
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Choosing the Kernel Function

* Probably the most tricky part of using SVM.

 The kernel function is important because it creates
the kernel matrix, which summarizes all the data

* |n practice, a low degree polynomial kernel or RBF
kernel with a reasonable width is a good initial try
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Choosing C

 Cross-validation

— To assess how good a classifier is we can use

cross-validation

* Divide the data randomly into k parts

— If the data is imbalanced, use stratified sampling

e Use k-1 parts for training

* And the held-out part for testing to evaluate accuracy
or ROC curve or other performance metrics

* To choose C, you can do nested cross-

validation
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Handling data imbalance

 |f the data is imbalanced (too much of one
class and only a small number of examples
from the other)

— You can set an individual C for each example
— Can also be used to reflect a priori knowledge
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Strengths and Weaknesses of SVM

e Strengths
— Margin maximization and kernelized
— Training is relatively easy
* No local optimal, unlike in neural networks
— It scales relatively well to high dimensional data

— Tradeoff between classifier complexity and error can be controlled
explicitly (through C)

— Non-traditional data like strings and trees can be used as input to
SVM, instead of feature vectors

* Weaknesses
— Need to choose a “good” kernel function.
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Multi-class Classification

* SVM is basically a two-class classifier

* One can change the QP formulation to allow
multi-class classification and such SVMs do
exist

e But you can also try to do multi-class
classification
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End of Lecture

We want to make a machine that will be
proud of us.

- Danny Hillis
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