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Topics Covered

e Gradients and Subgradients
* Gradient descent based learning

— PEGASOS
— SARAH
— Coordinate Descent
* Kernel Approximation
— Fourier Approximation

 Randomized Algorithms
— Random Kitchen Sinks
— Random Projections
— Extreme Learning Machine
— Doubly Stochastic Learning
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Learning from Big Data

* Classification of large data sets

* Requires super-efficient learning algorithms

— These problems are constrained by the total
computation time

— In small scale learning problems, the error is
constrained by the number of training examples

e QP solver for SVM

— Given n examples, the computational cost is O(n?) to
O(n3) given a precomputed kernel matrix for small and
large values of C respectively

* Bottou and Lin, “Support Vector Machine Solvers”, JMLR
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Big Data issues

* Kernel computation
— Computing the kernel is expensive

— Only a few kernel values have any impact on the
solution (support vectors!)

— The kernel does not fit in the memory
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Computation time
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Computation time

 Scikit-SVM has complexity of O(dn?) to O(dn3) and uses
libsvm
— Can benefit from sparse data
— Can benefit from caching the kernel

— Linear SVM is faster (sklearn.svm.LinearSVC) and uses liblinear
for larger number of examples

* Check out: Tips on practical use
— Data Copying
— Kernel Caching

— Data Scaling and Preprocessing (badly scaled data will cause
issues!)

— Uses Joblib (built-in support for parallelization!)

— Use Stochastic Gradient Descent
(sklearn.linear_model.SGDClassifier)

http://scikit-learn.org/stable/modules/svm.html#tips-on-practical-use
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Effect of Kernel Caching
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Representation

* SVM style algorithms can be represented as:

A 1
%ﬂgl\szJra Z U(w; (x,9))
(x,y)€S

Uw; (x,y)) = max{0,1 —y(w,x)}

— The loss functions and the regularizers can be changed

— We solved the dual of the above formulation using a
QP Solver

— However, to develop new classifiers, we need to know
about some “easy” and fast optimization methods
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Types of SVM Solvers

* Interior Point Methods: O(n?), reaches an ¢-
accurate solution in O(log(log(1/ €))

 Decomposition based methods: SMO, SVM-Light,
typically super-linear in the number of examples

e Cutting plane methods: reach an e-accurate
solution in O(nd / A€) time

* Primal solvers: Use the representation theorem
w =Y, a;V;X; to solve the nonlinear
classification proble in the dual with conjugate
gradient or newton optimization methods

e Stochastic gradient descent
— http://scikit-learn.org/stable/modules/sgd.html

CIS 621: Machine Learning PIEAS Biomedical Informatics Research Lab


http://scikit-learn.org/stable/modules/sgd.html

Efficient Algorithms for your own learning machines

* PEGASOS

— Shalev-Shwartz, Shai, Yoram Singer, Nathan Srebro, and Andrew Cotter.
“Pegasos: Primal Estimated Sub-Gradient Solver for SVM.”
Mathematical Programming 127, no. 1 (March 1, 2011): 3—30.
doi:10.1007/s10107-010-0420-4.

— Gradient based method
— Solves the SVM in the primal

— The number of iterations is not dependent upon the
number of examples

— Easy implementation!

— Supports out of core learning
* Learning from data that doesn’t fit into main memory
* Online classifier, i.e., the learning can be done in batches
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Gradient

* a generalization of the usual concept
of derivative of a function in one dimension to
a function in several dimensions.

 Given a functionf (x) = f(xq, x5, ..., X;,), its

gradient is given by
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Gradient Descent

* A derivative based optimization method to
find local minimum

Xnt1 = Xn — ¥n VF(%n) V7NN
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Subgradient

— Generalizes the gradient to 4
functions which are not
differentiable.

— Given a function f(x), its
subderivative is any value of

‘c’ for which / 0

fx) = f(xo) 2 e(z — x0)
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Subgradient

* the set of sub-derivatives at x, for a convex
function is a nonempty closed interval [a, b]

7= Lm f(z) = flzo)

T—+EQ r — Ty

P, Tird f(z) — fxo)

1’_”1’3- r — Ty

 The set [a, b] of all subderivatives is called
the subdifferential of the function f at x,. If fis
convex and its subdifferential at contains exactly
one subderivative, then fis differentiable at x,,.
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Subgradient

 The Taylor series approximation of a function
at ‘a’ is given by

f'(a)
1!

R LUy

fla)+ =7 (z—a) +
* The first order approximation is

f'(a)
fla) + — (@ —a)

* Thus, if the first order approximation f(a)+c(x-
a) of the function under-approximates the
function, then ‘¢’ is a subderivative of the
function!
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Examples

Loss function Subgradient

—vix; if vz <1
£(z, v;) = max{0, 1 — v;z vV, = -
(@ ¥ { viz) ! 0  otherwise
€(z, yi) =log(l +e771%) Vi = — e Xi

X; if z—vi =€
£(z, vi) = max{0, |vi — 7| — €} vi=1—=X; if vj—z>¢€
0 otherwise

€z, vi) = maxyey Sy, vi) — Ty + 2y | Vi = d(X;, ‘h — (X, Vi)

where ¥ =argmax, §(v, vi)—2y,+2y

€z, yi) = log (] + 2y F:’f—:}":) Vi =2, Prd(Xiyr) — ¢(Xi, i)
where p, = €% [ > €%
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Derivation of Pegasos

* The basic optimization problem of SVM can be
written as:

A : 1
min g+ stf-(w; (.9) -
XK.y )ES

where
f(w:;(x.y)) = max{0.1—y(w.,x)} ,

* Pegasos operates by picking one example
randomly at each iteration and computing the
value of the objective function with respect to
that (Stochastic!)

G A
flwii) = SIWIE + ((ws (i, 0:,))
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Pegasos Derviation

* The subgradient of this function is given by

Vi=Awe — Ly, (W, x4, ) < 1] yi, x4,

 The weight update equation can be written as

Wil — Wy — 1V

* With the learning rate given by  » =1/t

— The learning rate is gradually reduced

(“annealing”)

 The complete equation thus becomes

Wil (]_ — ?}“rf + ”t]]-[ﬂit {“rt- K?;t} < ]‘] Ui, X,

CIS 621: Machine Learning
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Projection step (optional)

* Limit the weight vector to a ball of radius 1/vx

— Better control of generalization

* Done by

S /v
W1 <— Imin {1, TWoral } Wi
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Pegasos Algorithm

INPUT: S, N\, T, k
INITIALIZE: Setwy = 0
FOrR t=1,2,..., T

/ /

Choose A: C [m], where | A+| = k, uniformly at random

Set A ={ic Ay (we,xi) <1}
Set n: = %

Set wip1 «— (1 —n: Nwe + 2 z-zieAj i X

- . - 1/V\
[Optional: w¢41 «— min {1, Twiral } Wit |
OUTPUT: W41
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Mini-batch version

* Select 'k’ examples at each step in a set A,

e Potentially better approximation of the gradient
through averaging over examples in A,

INPUT: S. ATk
INITIALIZE: Setwy = 0
ForR t=1,2,....7

Choose A C [m/|, where | A¢| = k, uniformly at random
Set A zl{z' c Ay (we,x;) < 1}
Set 1y = g

Setwigpr «— (1 —ns N)we+ I Z?EA? Vi X

N . PR 1 1/
[Optional: w¢y1 «— min {l, ol } Wietl |
OUTPUT: w41
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Properties

. Convergence

. : p : o ~(d
—  Toreach an g-accurate solution in which f(wr) — f(w*) < g, the number of iterationsis T = O (E)

2 1
= flw) :EWTW+EZ7£11(xi:Yi;W)
»  w' = argmin,, f(w)
= disthe dimensionality of the data
= O(g(n)=0 (g(n)logk(g(n))) , 3k, Pronounced Soft-O Ignores logarithmic factors because g(n) trumps log*(g(n))
= Number of iterations is Independent of the number of data points

= |deally suited for large scale data

= |nverse dependence on training set size (SVM Optimization: Inverse Dependence on Training Set Size by Shalev-Shwartz
and Srebro, 2008) — Training time to reach a certain classification error decreases with increase in training set size!

»  The runtime required to get a generalization error [(w) < £ + [(W") using a training set of size m is

(o)

=  Easy Implementation & Extensibility to other learning problems
= Easy batch processing

=  Easy Parallelization: Scikit and Spark implementation of SGD
=  Simple Averaging the weights from different machines, “Parallel SGD: When does averaging help?”, Zhang et al., 2016
= “Slow learners are Fast”, Langford et al., 2009

= |ssues
. Bias (can be added as an additional feature or do a binary search over the bias term), Typically not needed for large number
of features

=  Sensitive to feature scaling (normalize and standardize your features via preprocessing)

= Averaging: A simpler approach to obtaining an O(1/t) convergence rate for the projected stochastic subgradient method", and
"Stochastic Gradient Descent for Non-smooth Optimization: Convergence Results and Optimal Averaging Schemes*

. Minimal impact for convex learning problems, more useful for non-smooth optimization
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For Kernels

The weight update equation can be written as

Wil — (1 — ?}Wt + el lyi, (We, xi,) < 1 wi, X,

Let’s take: vi = 72004, Ly (Wi, xe) < 1 yix;

This equation (12) in the paper
has a mistake with a ‘-> when it

1 1
ThUS: Wf‘—i_l = (1 o ?) Wt + HV{-_ ; should have been ‘+’

Assume that at iteration ‘i’ we choose example ‘i’ and then try to see what its impact on
the weight vector is uptil iteration ‘t’ independent of other examples (assume only one
example!)

For this purpose we take
— Theinitial multiplier of v, is thus <=

CIS 621: Machine Learning PIEAS Biomedical Informatics Research Lab
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Using Mercer’s Conditions

We can now solve the recurrence with

1 1 i\ 1 1
Wiip = 1——)w- ——; =(—)—v- —; v+ v
i+2 ( i+1 ‘+1+/1(i+1) 17 i/ ai ‘+/1(i+1) 17 G+ 1)( i t Vi1
_ 1\t
In general, Wy, 1 = ﬂziﬂvi

SUbSt|tut|ng Vi Wt—f—] = E Z I]‘[Ij?,f {Wf—.(j(xit)‘\j < 1} ylt(v(XH)

i=1

Let, denote the number of times, uptil the current iteration, the example i, has been chosen
and it has violated the margin

(-};f_I_l[ ] |{IL t: 'itf = j AN Ijj {Wl{—fl‘ (’J(Xj);’ < 1H
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Using Mercer’s Conditions

t

1 , | \ |
*  With this definition and Wit = > Ay, (Wi o(xi,)) < 1y, 0(x;,)
=1

1 .
¢ We get‘ Wt+1 - Eat+1 []]ylt¢(xlt)
* Since we have a total of m” examples we get

1

T

Wil = 37 ;“tﬂm Y (X5)
* The final weight vector will thus be: w = %Z}Zl A7y [j]yjqb(xj)

* Thisisinline with the Representer Theorem

— The weight vector is being expressed as a linear combination of the given
examples
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Using Mercer’s Conditions

* With this, we can now evaluate the output score of an
example as:

1 . 1 :
— WT¢(X) = EZTﬂ AT41 []]yjqu(xj)qb(x) =T }n=1 aAT41 [I]YjK(xj,X)
* Thus for learning, all we need are the a for each example

* Note that the calculation of a requires us to see if the chosen example violates the
margin or not which in turn requires us to compute the loss function which is
dependent on the output score for that example at that iteration

* Thus, each iteration now becomes O(m)

— Overall, runtime with kernels thus becomes O (%)

— As a consequence of this, the runtime is dependent upon the number of
examples even though the number of iterations is not

— Also note that the problem is still being solved in the primal as the
optimization is still with respect to w and not the lagrange variables in the
dual representation

CIS 621: Machine Learning PIEAS Biomedical Informatics Research Lab
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Fig. 4 Comparison of linear SVM optimizers. Primal suboptimality (fop row) and testing classification
error (bottom row), for one run each of Pegasos, stochastic DCA, SVM-Perf, and LASVM, on the astro-ph

(left), CCAT (center) and covl (right) datasets. In all plots
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the horizontal axis measures runtime in seconds
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Timing results (linear)

e Superfast!

Table 1 Training runtime and test error achieved (in parentheses) using various optimization methods on
linear SVM problems

Dataset Pegasos SDCA SVM-Perf LASVM
astro-ph 0.04s5 (3.56%) 0.03s (3.49%) 0.15 (3.39%) 545 (3.65%)
CCAT 0.165 (6.16%) 0.365 (6.57%) 3.65 (5.93%) = 18000s
covl 0.325 (23.2%) 0.20s (22.9%) 4.25 (23.9%) 210s (23.8%)

CIS 621: Machine Learning PIEAS Biomedical Informatics Research Lab
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Comparison of kernel SVM optimizers. Primal suboptimality (fop row), primal suboptimality in

log scale (middle row) and testing classification error (boitom row), for one run each of Pegasos, stochastic
DCA, SVM-Light, and LASVM, on the Reuters (left column), Adult (ceater column) and USPS (right
column) datasets. Plots of traces generated on the MNIST dataset (not shown) appear broadly similar to
those for the USPS dataset. The horizontal axis is runtime in seconds
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Effect of batches
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Fig. 7 The effect of the mini-batch size on the runtime of Pegasos for the astro-ph dataset. The first plot
shows the primal suboptimality achieved for certain fixed values of overall runtime kT, for various values
of the mini-batch size k. The second plot shows the primal suboptimality achieved for certain fixed values
of k. for various values of kT. Very similar results were achieved for the CCAT dataset
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Effect of Sampling

Fig. 8 The effect of different -
sampling methods on the T
performance of Pegasos for the
astro-ph dataset. The curves
show the primal suboptimality
achieved by uniform 1.1.d.
sampling, sampling from a fixed
permutation, and sampling from
a different permutation for every
epoch

—— Uniformly random
- = - New permutation every epoch
—&— Same permutation each epoch

0.1

0.01
I

0.001
1

* One epoch is when the classifier
has used all input examples once

primal suboptimality (log scale)

le—4
l

epochs
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Solving other problems

A number of other problems can be
solved using SGD just by choosing the
appropriate loss function

Loss function Subgradient
, . , : —yixi  f yiz <1
lz,y;) = max{0, 1 — y;z Ve = .
(2 i) { vz} t {U otherwise

Binary classification

((z.y;) = log(l + e7¥%) Ve = — 1+“Z%iz X
Binary classification with log-loss
X; if z—y; > ¢
/(z,yi) = max{0, |y; — z| — €} vi=1 —X; 1f yi— 2> ¢
0 otherwise

Regression

(lz, yi) =max o(y.yi) — 2y, + 2
( ,,1) yey ( -.3) i Uy

Multi-class classification

vV = r_,-'f:[i}{i. :',!) — (,5(}{3'. ‘E,!g')
where 4 = arg max d(y,yq) — zy, + 2y
u

((z,yi) =log | 1+ Z T Eu
rEY;

Multi-class classification

Ve =1 prd(Xi.1) — d(Xi. yi)

where p,. = "7/ E e”d
i

32
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Required Reading

* Shalev-Shwartz, Shai, Yoram Singer, Nathan
Srebro, and Andrew Cotter. “Pegasos: Primal
Estimated Sub-Gradient Solver for SVM.”
Mathematical Programming 127, no. 1
(March 1, 2011): 3—30. d0i:10.1007/s10107-
010-0420-4.

e http://ciml.info/ “Efficient Learning” and

“Linear Models”
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Algorithm Citation SVM type Optimization type Style Runtime
SMO [Platt, 1999] Kernel Dual QP Batch Q(n*d)
SvmMmieht [Joachims, 1999] Kernel Dual QP Batch Q(n?d)
Core Vector Machine [Tsang et al., 2005, 2007] SL Kernel Dual geometry Batch O(s/p*)
Svmrert [Joachims, 2006] Linear Dual QP Batch O(ns/\p?)
NORMA [Kivinen et al., 2004] Kernel Primal SGD Online(-style) O(s/p*)
SVM-SGD [Bottou, 2007] Linear Primal SGD Online-style Unknown
Pegasos [Shalev-Shwartz et al., 2007] Kernel Primal SGD/SGP Online-style O(s/\p)
LibLinear [Hsieh et al., 2008] Linear Dual coordinate descent Batch O(nd -log(1/p))
SGD-QN [Bordes and Bottou, 2008] Linear Primal 2SGD Online-style Unknown
FOLOS [Duchi and Singer, 2008] Linear Primal SGP Online-style O(s/Ap)
BMRM [Smola et al., 2007] Linear Dual QP Batch O(d/Ap)
OCAS [Franc and Sonnenburg, 2008] Linear Primal QP Batch O(nd)

Table 1: A comparison of various SVM solvers discussed in this document. “QP” refers to a quadratic programming technique,
“SGD” to stochastic (sub)gradient descent, and ‘“SGP” to stochastic (sub)gradient projection. ‘“SL”’ means the method only works
with square-loss. The runtime is for a problem with » training examples and d features, with an average of s non-zero features per
example. )\ is the SVM regularization parameter, and p the optimization tolerance. ‘“Unknown’ means there is no known formal

bound on the runtime.

Excellent read: “Large Scale Support Vector Machines: Algorithms and Theory”,

Research Exam by Aditya Krishna Menon

CIS 621: Machine Learning
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Further Developments

Excellent read: “Large Scale Support Vector Machines: Algorithms and
Theory”, Research Exam by Aditya Krishna Menon

SARAH: A Novel Method for Machine Learning Problems Using Stochastic
Recursive Gradient by Nguyen et al, March 2017

Large Scale Kernel Learning using Block Coordinate Descent by Tu et al.,
2016

Diving into the shallows: a computational perspective on large-scale
shallow learning, Mar 2017

Efficient handling for d>>n: S. Shalev-Shwartz, A. Tewari Stochastic
Methods for L1-regularized Loss Minimization [Jul.] J. Mach. Learn. Res.,
12 (2011), pp. 1865-1892

Faster Kernelization

— Lee, Sangkyun, and Stephen J. Wright. “Stochastic Subgradient Estimation Training for
Support Vector Machines.” In Mathematical Methodologies in Pattern Recognition and
Machine Learning, edited by Pedro Latorre Carmona, J. Salvador Sanchez, and Ana L. N.
Fred, 67—-82. Springer Proceedings in Mathematics & Statistics 30. Springer New York,
2013. http://link.springer.com/chapter/10.1007/978-1-4614-5076-4 5.

CIS 621: Machine Learning PIEAS Biomedical Informatics Research Lab
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Further Developments: Nonlinear SVM Approximations

* Budgeted SVM: A Toolbox for Scalable SVM
. . .. Algorithm Training time Prediction time | Model size
Approximations by Djuric et al. 2013
— Trading Representability for Scalability: Adaptive Multi- Pegasos O(N-C-S) 0(C-S) 0(C-D)
Hyperplane Machine for Nonlinear Classification
* SuperSimple! AMM O(N-5-B) 0(S-B) O(D-B)
* Cannot handle implicit feature representations
* BudgetedSVM: AMM LLSVM ,Dl:rlrulll'_S_EE' + N-SB) D{S-EE +5B) OB + EEJ'
—  http://www.dabi.temple.edu/budgetedsvm/index.html
BSGD O(N-{C + 8)-B) O((C + 5)-B) Of(C + D)-B)
RBF-SVM | O(I-N-C-5) O(N-CG-5) O(N-C-8)
Error rate (%) Training time (seconds)’
Datasets ANMM AMM Linear Poly2 | RBF | AMM | AMM Linear Poly2 RBF
batch online (Pegasos) | SVM | SVM | batch | online | (Pegasos) | SVM SVM
afa, 15.034+0.11 | 16.44+0.23 | 15.0420.07 | 14.94 | 14.97 2 0.2 1 2 99
ijenn 2.404+0.11 3.024+0.14 | 7.7640.19 2.16 1.31 2 0.1 1 11 27
webspam | 4.50£0.24 6.14+1.08 | 7.2840.09 1.56 0.80 80 4 12 3,228 | 15,57
mnist_bin | 0.53+0.05 | 0.5440.03 | 2.03£0.04 NA | 0.43° | 3084 300 277 NA | 2 days”
mnist_me | 3.20£0.16 3.364+0.20 | 8.4140.11 NA | 0.67° | 13864 | 1200 1180 NA | 8 days”
rcv1_bin 2.204:0.01 2.214+0.02 | 2.2940.01 NA NA 1100 80 25 NA NA
url 1.34£0.21 2.874+1.49 | 1.5040.39 NA NA 400 24 100 NA NA

CIS 621: Machine Learning
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http://www.dabi.temple.edu/budgetedsvm/index.html

Where have we used it?

PAIRPred

— Significant reduction in training time
PyLemmings

— Pegasos inspired algorithm for multiple instance learning
PRANK

— Prion classification using PyLemmings style MIL
CAMELS

— PyLemmings style MIL for CAM Binding site prediction
MILIAMP

— PyLemmings for Amyloid Prediction
Implementation of Learning with Rejection
Feature selection and Mapping

— CAFE-Map: Context Aware Feature Mapping for mining high
dimensional biomedical data by Minhas, Asif and Arif (uses coordinate
descent)

CIS 621: Machine Learning PIEAS Biomedical Informatics Research Lab
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What’s Next?

* How can we approximate kernels to do
nonlinear classification?

CIS 621: Machine Learning PIEAS Biomedical Informatics Research Lab 38



Moore-Aronszajn Theorem

* Suppose K is a symmetric, positive definite kernel
on a set X. Then there is a unique Hilbert space of
functions on X for which K is a reproducing
kernel, i.e., K(a,b) = (p(a), (b))

— Can be used to do “kernel untricking”, i.e., get the
feature representation that reconstructs the kernel
 Example:

— Polynomical Kernel Features based on multinomial
expansion (sklearn.preprocessing.PolynomialFeatures)
* The number of features in the polynomial expansion of

degree p for an input feature dimension d is:D = (p ; d)

_ 2 2
() = (@2, . B2, V2T Tp1, - s V2T @1, V20 1Tp—2y . oy V2T 1T1, . . -, V2821,V 2CTy, . . .,/ 2¢T1, C)
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Polynomial Features

e Can construct nonlinear boundaries PolyiSEE Ao
by transforming the input features to
a polynomial feature space and then
using fast optimization algorithms

* Thought question

— Using SGD, we can solve a linear SVM
very fast

— When will it be useful to first transform
the data into polynomial features and
then use SGD instead of using a
nonlinear SVM (say, one based on SMO
style methods)?

* Useful for when number of training
examples is large and the number of
dimensions is small or a regularized solution
is needed (small “C”)
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Randomized Kernel Approximations

 Random Features for Large Scale Kernel Machines by Rahimi
and Recht

— Obtains a D-Dimensional approximation ¢ of a shift-invariant kernel

k(a,b) = k(a—b) ~@(a)" ¢(b)
 RBF Kernel k(a, b) = k(a — b) = exp(—v||la — b||?)
— Based on the Bochner’s theorem: The Fourier transform p(w) of a kernel
k(a — b) can be written as follows if w is drawn from p with ¥, (x)= e’

k(a—b) = f p(w)el® @ Bdey = | p(w)e/® 2%ei* bde = E,(a) i), (h)*]
]Rd ]Rd

— We can approximate this averaging using a monte-carlo approximation by
randomly drawing w from p(w) with z,(x) = ejo’a — cos(wTa) +

jSin(wTa) = [cos(wTa) sin(wTa)]T or z,(x) =2 cos(wTa + c)

D
1
i=1
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Randomized Kernel Approximations

* Thus, the features can be written as:

sin(w{ )
cos(w] x)
2 ii
Zz) == : . Wi i P(w)
Dy. 7
blll(wn/zl‘)
cos(w};ﬂa:)
and another of the form
ol T
0s(wy T + b i
. 5 [¢ ::(wl.r 1) wi 9 p(w)
i(z) =1 = ,
D : iid o .
cos(whz + bp) bi ~ Unif[p,ox)

* We know that, for the Fourier Transform of a Gaussian is a Gaussian
— Thus the w can be drawn from a Normal Distribution

* In general Kernel Name  k(A) p(w)
. _lang _D Il
Gaussian e” 2 (2m)" 2 e "2
: Al 1
Laplacian e 2 II Oﬁg |(|1 e
Cauchy 11, 787 € '

 The scaling parameter can be viewed as a simple scaling of the
input data as

exp(—ylla — b||*) = exp(=|lyya — ¥b|*)
PIEAS Biomedical Informatics Research Lab
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Algorithm 1 Random Fourier Features.

Require: A positive definite shift-invariant kernel k(x,y) = k(x — y).

Ensure: A randomized feature map z(x) : R?

— 'R,QD so that z(x)'z(y) =~ k(x —y).
Compute the Fourier transform p of the kernel k: p(w) = 1 — [e™? “”Ak(A) dA
Draw D iid samples w1, - - - ,wp € R from p.
Let Z \/7 [cos(w x) --- cos(wpx) sin(wix) - sm(wa)]
Dataset Fourier+LS Binning+LS CVM Exact SVM
CPU 3.6% 5.3% 5.5% 11%
regression 20 secs 3 mins 51 secs 31 secs
6500 instances 21 dims D = 300 P = 350 ASVM
Census 5% 7.5% 8.8% 9%
regression 36 secs 19 mins 7.5 mins 13 mins
18,000 instances 119 dims D = 500 P = 30 SVMTorch
Adult 14.9% 15.3% 14.8% 15.1%
classification 9 secs 1.5 mins 73 mins 7 mins
32,000 instances 123 dims D = 500 P = 30 svMmlight
Forest Cover 11.6% 2.2% 2.3% 2.2%
classification 71 mins 25 mins 7.5 hrs 44 hrs
522,000 instances 54 dims D = 5000 P = 50 1ibSVM
KDDCUP 99 (see footnote) 7.3% 7.3% 6.2% (18%) 8.3%
classification 1.5 min 35 mins 1.4 secs (20 secs) < 1s
4,900,000 1nstances 127 dims D = 50 P =10 SVM-+sampling

CIS 621: Machine Learning
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Approximation Error

* Given a shift-invariant kernel K(a,b) = K(a — b), fora, b €
R? the kernel can be approximated to within € with only D =

d 1 el :

0 (—2 log —2) and excellent classification and regression
€ €

performance can be achieved with smaller D

* Downstream Error (Error in classification/regression
performance)

— Scales with O (\/%)

* “On the Error of Random Fourier Features” by
Sutherland and Schneider

CIS 621: Machine Learning PIEAS Biomedical Informatics Research Lab
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Implementation

* from sklearn.kernel approximation import
RBFSampler X

sin(w{
cos(w]
— Implements the cosine only £ :\/;Ln(w;/ x)l-wﬁ%(w)
. cos(w], ,)
¢ COde In NOteS and another of the form /
. . . cos(wlx + by)
— Implements the sin-cos projection IRNEY e ]

D

w; P(w)

: ’ did .
cos(whz + bp) b; ~ Unif{g gn

e Better than cosine only

— Also implements the Orthogonal Random Features
e Better than sin-cos
e Orthogonal Random Features by Felix Xinnan Yu et al. (2016)

—  https://channel9.msdn.com/Events/Neural-Information-Processing-Systems-Conference/Neural-Information-Processing-Systems-
Conference-NIPS-2016/Orthogonal-Random-Features

—  Derived from: Orthogonal Random Features https://arxiv.org/abs/1610.09072 , Implementation: https://github.com/NICTA/revrand

* How can you test?
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Implementation

RBF Appox

RBF-2 Appox

RBF Appox SGD

4
24
3.0
16
2 15
0.8
- 0.0
: 0
; -0.8 1-15
1-16 2 1-3.0
{-2.4 1 45
{-3.2 45
{-6.0
-4 2 4 -
Ty Ty T

True SVM

E
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Other Methods

* Nystroem Approximation
— Better approximation than random features

* FASTFood: Le, Quoc Viet, Tamas Sarlos, and Alexander Johannes Smola.
“Fastfood: Approximate Kernel Expansions in Loglinear Time.”
arXiv:1408.3060 [cs, Stat], August 13, 2014.
http://arxiv.org/abs/1408.3060.

* Look at scikit-learn implementations

—  http://scikit-learn.org/stable/modules/classes.html#module-sklearn.kernel approximation

True SVM

Nys Appox

-4 -2 0 2 4

CIS 621: Machine Learning PIEAS Biomedical Informatics Research Lab
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Extensions based on Random Approximations

* Extreme Learning Machines

— A least-squares SVM with random features
* Closed form solution, extremely fast!

1 O™,
min — — e; L
2 18117 + 2 ; leil fix) = Zﬁehf(x) = h(x)p

ﬁERLxm
1=1
— ¢ T P —
S.t. h(Xi)B _ti —ei, 1 = 1, ...,N. h;(x) = G(a;, b;, X), a,-ERd.b,-ER
1 C Commonly used mapping functions in ELM.
. 2 2
OR min Lggm = ”ﬁ” + —[IT— Hﬁ” . Sigmoid function G@,b,x) = m——"——
BeRLxm 2 2 “+exp( (a-X+b))
Hyperbolic tangent function G@,b,x) = {Tan=ax)
1 Gaussian function G(a, b, x) = exp(—b|x —a|)
Iy Multiquadric function G(@, b,x) = (||x — a|| + b*)1/?
s ‘B*Z(HTH+E H'T. q @50 =x-al +EVR
Hard limit function Gabx) =1 ' a-Xx+b=
0, otherwise
Cosine function/Fourier basis G(a,b,x) =cos(a-x+b)

I -1
OR (forN<L) g*=H'a* =H" (HHT + ) T,
C Parameters a and b are chosen randomly
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ELM as a Single Layer Neural Network

* ELM can be viewed as a single hidden layer neural network such that the
weights of the hidden layer are initialized randomly — has universal
approximation ability

* However, the idea is not new but is interesting! Many Python
implementations available!

A 4 4 T .
B B B, Feature learning
_Probleny based - ™ | Regression
L Random Hidden Neurons (which need not be

algebraic sum based) or other ELM feature
mappings. Different type of output functions
could be used in different neurons:

h;(x) = G;(a;, b;,x)

d Input Nodes

Trends in extreme learning machines: A review by Huang et al. (2015)
Extreme Learning Machine for Multilayer Perceptron: Interesting extension to multilayer networks

CIS 621: Machine Learning PIEAS Biomedical Informatics Research Lab
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Towards Infinitely Wide Neural Networks

*  “Weighted Sums of Random Kitchen Sinks: Replacing minimization with randomization in
learning” by Recht and Rahimi, 2009

e Originates from the concept of random projections
— “The Unreasonable Effectiveness of Random Orthogonal Embeddings”, 2017

Algorithm 1 The Weighted Sum of Random Kitchen Sinks fitting procedure.

Input: A dataset {x;,y; }i—1._,» of m points, a bounded feature function |¢(z;w)| < 1, an integer
K, a scalar C, and a probability distribution p(w) on the parameters of ¢.
Output: A function f(z) = Zi;‘:l o(z; wi ) ag.

Draw ws, ..., wg iid from p.
Featurize the input: z; < [¢(z;;w1), ..., ¢(zi;wk)] .
With w fixed, solve the empirical risk minimization problem
1 T
c e . T
minimize — cla z;, vy 3
inimi “”’*Zl (a2, yi) 3)
—
st. [lafls < C/K. 4)
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Doubly Stochastic Gradient Learning

* “Scalable Kernel Methods via Doubly
Stochastic Gradients” by Dai et al. 2014

— “The general perception is that kernel methods
are not scalable, and neural nets are the methods
of choice for nonlinear learning problems. Or have
we simply not tried hard enough for kernel
methods?”

* Based on kernel approximation

* The number of approximation elements is not
fixed a priori

CIS 621: Machine Learning PIEAS Biomedical Informatics Research Lab
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Doubly Stochastic Gradient Learning

e Random Feature Generation and Stochastic
Gradient Combined into one algorithm

argmin R(f) = By [/ (@), 9)] + 5 1113
JeH

Algorithm 1: {ai}le = Train(P(z,y)) Algorithm 2: f(x) = Predict(z, {051-}221]
Require: P(w), ¢u(z), I(f(2),y), v Require: P(w), ¢, ().

1: Set f(x) = 0.

2: for:=1,...,t do

3:  Sample w; ~ P(w) with seed 1.

4

3)

2:  Sample (z;,y;) ~ P(z,y).

3:  Sample w; ~ P(w) with seed 1.
4 f(z:) = Predict(z;, {0, }.2}).
5: ay = =l (f(®i), ¥i) Pu, (i)
6

7

f(@) = fx) + i, ().

. end for

L

aj =(1—vyv)a;forj=1,...,i—1.
. end for

0 i i f(:) > 1
ViYidw, (Ti) i yif(z:) <1
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Comparison with other SVMs

0 k-SDCA ’ % |
~—NORMA os | 20 \
—~35 —2o8 r-pegasos —_ — o
o o | o
9‘“_‘:_‘“_, 2% -sbca é:.a 2 \1 §-:—25-
'é 30 2% n-pegasos o} | ol
= — 2% n-SDCA s 15 =20
W 25 —doubly SGD L p
= 20 = =
0.5 10
15 , , o . . . : . . .
0°_ 107 10° _ 10" 10 N 10° 10 10°
Training Time (sec) Training Time (sec) Training Time (sec)
SC1: (1) Adult (2) MNIST 8M 8 vs. 6 (3) Forest
40 ' 3 35 . -
—k-SDCA
~—NORMA \
— 35¢ — 2% r—pegasos o 25 30
o~ 28 -SDCA 2 o 2
= 30 28 n-pegasos, :’ :25
= —2%n-SDCA = - e
L 05| —doubly SGD LUl L 20
17 17 k7]
® \ o ! )
20 = o F s
15
. . . - 10
107 100 10° ° 10° 10? 10° 107 10° 10 10° 10°
Training Time (sec) Training Time (sec) Training Time (sec)
SC2: (4) Adult (5)MNIST 8M 8 vs. 6 (6) Forest.

Figure 6: Comparison with other kernel SVM solvers on datasets (3) — (5) with two different stopping
criteria.
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Comparison with Neural Nets

50 100
2 — jointly—trained neural net . — jointly—trained neural net \-—\/—- ~— jointly—trained neural net
- "'\ — fixed neural net > 40 \\_\ — fixed neural net - 90 —fixed neural net
S \, |~ doubly SGD = \ — doubly SGD S g — doubly SGD
= 15 ' - \ i d
O O N [e)
= = 30 = 70
) @ \ )
..%. ’ 433-; "% 60
20
- ~ = 50
0.5 . 10 . . 40 .
10° 10° 10’ 10° 10° 107 10° 10°
Number of training samples Number of training samples Number of training samples
(1) MNIST 8M (2) CIFAR 10 (3) ImageNet,
20 —neural net —neural net

. — doubly SGD 2.6 — doubly SGD

Q@ 2.4 ]

2 22

£ <

o —_ 2

i TN

< 10 o8

Ll 0 16

<

1.4
=
1.2
. 5] 1 I 5 : ]
10 o 10 10 o 10
Number of training samples Number of training samples
(4) QuantumMachine (5) MolecularSpace.
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Implementation

* The paper details implementation for a wide
variety of kernels and a number of learning
problems including SVM, Logistic Regression,
Ridge Regression, Robust Regression, SVR,
Quantile Regression, Novelty Detection,
Density Estimation, Gaussian Processes, etc.

e Available:
https://github.com/zixul1986/Doubly Stochastic Gradients

* Julia Implementation by Dr. Fayyaz Minhas

CIS 621: Machine Learning PIEAS Biomedical Informatics Research Lab
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What are the random features doing?

* | think that the random features are making
the SVM have data based basis instead of a
priori basis (or kernel) which remains fixed!

* Extension
— Triply Stochastic Sub-Gradient Learning

 Parallelization

— Block processing: On each machine m=1...M, take
D’ different dimensions and randomly select from
the data, and calculate «;, then simply average
the outputs for each machine

CIS 621: Machine Learning PIEAS Biomedical Informatics Research Lab
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Semi Random Features (skip)

“Deep Semi-Random Features for Nonlinear Function Approximation” by Kawaguchi et al., 2017

“Can we have the best of both worlds? Can we develop a framework for big nonlinear problems
which has the ability to adapt basis functions, has low computational and storage complexity, while
at the same time retaining some of the theoretical properties of random features? Towards this
goal, we propose semi-random features to explore the space of trade-off between flexibility,
provability and efficiency in nonlinear function approximation. We show that semirandom features
have a set of nice theoretical properties, like random features, while possessing a (deep)
representation learning ability, like deep learning. More specifically:
— Despite the nonconvex learning problem, semi-random feature model with one hidden layer has no bad
local minimum;
— Semi-random features can be composed into multi-layer architectures, and going deep in the architecture
leads to more expressive model than going wide;
— Semi-random features also lead to statistical stable function classes, where generalization bounds can be
readily provided.
They propose semi-random features: In experiments, we show that semi-random features
can match the performance of neural networks by using slightly more units, and it outperforms
random
features by using significantly fewer units.

The single hidden layer network is: f;(l: w) = (JS (x"R)® (XTW“))) W@,
— Risrandomly drawn, W) and W2 are optimized
)z z>0 . .
- o4(2) = 0 else’ S? RelLU style function wl = (Wil), ng): e aw-:r[;l)) < R(d+l)xn=
Code: http://github.com/zixu1986/semi-random g1
R = (r1,ra,...,r,) € REFDX? apd

W = (w? . w®)T e R
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Scaling up further (skip)

* “How to Scale Up Kernel Methods to Be As
Good As Deep Neural Nets” by Lu et al., 2014

— Multinomic logistic regression based on random
kitchen sinks with block parallelization and
stochastic gradient descent

— Compared to DNN
— Equivalent performance
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Interesting Papers

— Faster Kernel Ridge Regression Using Sketching and Preconditioning
— Fast randomized kernel methods with statistical guarantees
- Deep Semi-Random Features for Nonlinear Function Approximation

— Steps toward deep kernel methods from infinite neural networks

— A comparative study on large scale kernelized support vector machines
— Stochastic Methods for I1-regularized Loss Minimization

— Distributed Coordinate Descent Method for Learning with Big Data

— The Tradeoffs of Large Scale Learning

- Large-Scale Support Vector Machines: Algorithms and Theory
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Deep learning papers

. JMLR Dropout

. Failures of deep learning

. Skflow

. keras

. http://nuit-blanche.blogspot.com/2017/01/understanding-deep-learning-requires.html

. Deep Nets Don’t Learn via Memorization

. https://medium.com/@phelixlau/deep-nets-dont-learn-via-memorization-6fd692dea63e

CIS 621: Machine Learning PIEAS Biomedical Informatics Research Lab 60


http://nuit-blanche.blogspot.com/2017/01/understanding-deep-learning-requires.html
https://medium.com/@phelixlau/deep-nets-dont-learn-via-memorization-6fd692dea63e
https://medium.com/@phelixlau/deep-nets-dont-learn-via-memorization-6fd692dea63e

End of Lecture

| believe that learning has just started, because
whatever we did before, it was some sort of a classical
setting known to classical statistics as well. Now we
come to the moment where we are trying to develop a

new philosophy which goes beyond classical models.
- Vapnik

http://www.learningtheory.org/learning-has-just-started-an-interview-with-prof-vladimir-vapnik/

CIS 621: Machine Learning PIEAS Biomedical Informatics Research Lab 61


http://www.learningtheory.org/learning-has-just-started-an-interview-with-prof-vladimir-vapnik/

