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Making deeper neural networks practical

• Optimization

• Handling vanishing (or exploding) gradients
– Pre-training (old!)

– Drop-out

– Batch Normalization

• Computational challenges
– Use of computational graphs for automatic 

differentiation of neural networks
• Allows for different types of architectures

– Using GPU parallelization
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Optimization Methods
• Gradient Descent: Go down!

• Stochastic Gradient Descent

• Mini-batch Gradient Descent

• SGD with momentum: accelerate if 
going downhill for a long time

• Nesterov momentum: accelerate but 
not indefinitely 

• Adagrad: Adaptive Learning Rate by 
accumulating past gradients

• AdaDelta/RMSProp: Adaptive Learning 
rate but does not accumulate all past 
gradients

• Adam: Adaptive learning rate with 
momentum
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An overview of gradient descent optimization algorithms by Sebastian Ruder, 20-16
http://sebastianruder.com/optimizing-gradient-descent/ , https://arxiv.org/abs/1609.04747

http://sebastianruder.com/optimizing-gradient-descent/
https://arxiv.org/abs/1609.04747
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Optimization Methods

• Sparse data

– Adaptive Learning rate

• RMSProp, AdaDelta and Adam are very similar

– Do well in general

– Adam slightly outperforms RMSProp and is a good choice

• Parallelizing and distributing SGD
– TensorFlow uses computational graph distribution

– Other parallel schemes include: HogWild! Delayed  SGD, 
etc.
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Understanding Drop-out

• “Dropout: A Simple Way to Prevent Neural Networks from 
Overfitting” by Srivastava et al., 2014.
– Randomly drop units (along with their connections) from the neural 

network during training

– Average weights across all “thinned” networks

– Replaces explicit regularization and produces faster learning

– Drop-out layer in keras!
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Effect of Dropout
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Understanding Batch-Normalization

• Re-normalization of weight parameters after 
every mini-batch to zero-norm and unit-variance 
with backpropagation

– Note: This is not re-initialization to random values, 
rather the current weights are updated

• Reduces the effects of weight normalization and 
enforces regularization leading to faster learning

– More effective than drop-out 

– No need for “pre-training”

• Available in Keras!
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Sergey Ioffe and Christian Szegedy. Batch Normalization: Accelerating Deep Network Training
by Reducing Internal Covariate Shift. arXiv preprint arXiv:1502.03167v3, 2015.
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Computational Graphs

• Making a generic package for multi-layer 
neural networks requires

– An abstract way of representing various 
computational operations involved in the network

– Distributed Evaluations

– Calculation of gradients

• Computational Graphs allow us to do all this!

8



CIS 622: Machine Learning in Bioinformatics PIEAS Biomedical Informatics Research Lab

Computational Graphs

• CGs are an easy way to think about 
mathematical expressions

• Formalizes the idea of neural networks and 
generalizes backpropagation and makes it 
computationally efficient

• The “compile” in keras builds a Computational 
Graph for the Network (can take time!)
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Example

• Differentiation via the 
chain rule can be 
represented as the 
computational graph

• Symbolic derivatives

• Parallelization
– Compute independent 

components in parallel

• Avoiding re-
computation
– Re-use symbolic 

derivatives

– Store previous values
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The magic of computational graphs
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http://colah.github.io/posts/2015-08-Backprop/

reverse-mode differentiationForward-mode differentiation

http://colah.github.io/posts/2015-08-Backprop/
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The magic of computational graphs

• Forward-mode differentiation gave us the derivative of 
our output with respect to a single input, but reverse-
mode differentiation gives us all of them.

• For this graph, that’s only a factor of two speed up, but 
imagine a function with a million inputs and one 
output. 

• Forward-mode differentiation would require us to go 
through the graph a million times to get the 
derivatives. 

• Reverse-mode differentiation can get them all in one 
fell swoop! 

• A speed up of a factor of a million is pretty nice!
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Practical Example
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Origins of Deep Learning
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Origins of Deep Learning

• Wang, Haohan, and Bhiksha Raj. “On the Origin of Deep Learning.” arXiv:1702.07800 [Cs, Stat], February 24, 2017. 
http://arxiv.org/abs/1702.07800.
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Modern Practices

• Deep Convolutional Neural Networks
• Residual Networks
• Generative Models

– Auto-encoders: VAE, NAE
– Generative Adversarial Networks
– Recurrent Neural Networks

• Recurrent Models
– RNN
– LSTM

• Transfer Learning
• Zero and One-shot learning
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End of Lecture-1

We want to make a machine that will be 
proud of us.

- Danny Hillis


