Making Deep Learning Practical

Dr. Fayyaz ul Amir Afsar Minhas

PIEAS Biomedical Informatics Research Lab
Department of Computer and Information Sciences
Pakistan Institute of Engineering & Applied Sciences

PO Nilore, Islamabad, Pakistan
http://faculty.pieas.edu.pk/fayyaz/

CIS 622: Machine Learning in Bioinformatics PIEAS Biomedical Informatics Research Lab

http://faculty.pieas.edu.pk/fayyaz/

Making deeper neural networks practical

* Optimization

* Handling vanishing (or exploding) gradients
— Pre-training (old!)
— Drop-out
— Batch Normalization

 Computational challenges

— Use of computational graphs for automatic
differentiation of neural networks

* Allows for different types of architectures
— Using GPU parallelization

CIS 622: Machine Learning in Bioinformatics PIEAS Biomedical Informatics Research Lab

Optimization Methods
* Gradient Descent: Go down! 0=0—n-VeJ(0)
e Stochastic Gradient Descent 6=0—n-VyJ(0z";y")
« Mini-batch Gradient Descent 0 =0 —n-VoJ(0; x4y n))
 SGD with momentum: accelerate if
going downhill for a long time

Y — SGD

— Momentum [

* Nesterov momentum: acceleratebut =——— = J§ w NAG -
not indefinitely | — Adagrad
Adadelta

 Adagrad: Adaptive Learning Rate by
accumulating past gradients —

« AdaDelta/RMSProp: Adaptive Learning| ——
rate but does not accumulate all past
gradients

Rmsprop

 Adam: Adaptive learning rate with
momentum

http://sebastianruder.com/optimizing-gradient-descent/ , https://arxiv.org/abs/1609.04747

CIS 622: Machine Learning in Bioinformatics PIEAS Biomedical Informatics Research Lab 3

http://sebastianruder.com/optimizing-gradient-descent/
https://arxiv.org/abs/1609.04747

Optimization Methods

e Sparse data
— Adaptive Learning rate

* RMSProp, AdaDelta and Adam are very similar
— Do well in general
— Adam slightly outperforms RMSProp and is a good choice

* Parallelizing and distributing SGD

— TensorFlow uses computational graph distribution

— Other parallel schemes include: HogWild! Delayed SGD,
etc.

CIS 622: Machine Learning in Bioinformatics PIEAS Biomedical Informatics Research Lab

Understanding Drop-out

* “Dropout: A Simple Way to Prevent Neural Networks from
Overfitting” by Srivastava et al., 2014.

— Randomly drop units (along with their connections) from the neural
network during training

— Average weights across all “thinned” networks

— Replaces explicit regularization and produces faster learning
— Drop-out layer in keras!

‘
»

E\
%

N/
N

()
7\

</
1A
2
&
R
Q
g4

7
Y

»7

. X/
2@

»

W
"‘.
.,.\\

(RN
o®

(a) Standard Neural Net

Dropout Neural Net Model. Left: A standard neural net with 2 hidden layers. Right:

An example of a thinned net produced by applying dropout to the network on the left.
Crossed units have been dropped.

CIS 622: Machine Learning in Bioinformatics PIEAS Biomedical Informatics Research Lab

Effect of Dropout

6.1.1 MNIST
Method Unit Architecture Error
Type %

Standard Neural Net (Simard et al., 2003) Logistic 2 layers, 800 units 1.60
SVM Gaussian kernel NA NA 1.40
Dropout NN Logistic 3 layers, 1024 units 1.35
Dropout NN ReLU 3 layers, 1024 units 1.25
Dropout NN + max-norm constraint ReLU 3 layers, 1024 units 1.06
Dropout NN + max-norm constraint ReLU 3 layers, 2048 units 1.04
Dropout NN + max-norm constraint ReLU 2 layers, 4096 units 1.01
Dropout NN + max-norm constraint ReLLU 2 layers, 8192 units 0.95
Dropout NN 4+ max-norm constraint (Goodfellow Masxout 2 layers, ('5 x 240) 0.94
et al., 2013) units

DBN + finetuning (Hinton and Salakhutdinov, 2006) Logistic 500-500-2000 1.18
DBM + finetuning (Salakhutdinov and Hinton, 2009) Logistic 500-500-2000 0.96
DBN + dropout finetuning Logistic 500-500-2000 0.92
DBM + dropout finetuning Logistic 500-500-2000 0.79

CIS 622: Machine Learning in Bioinformatics PIEAS Biomedical Informatics Research Lab

Understanding Batch-Normalization

* Re-normalization of weight parameters after
every mini-batch to zero-norm and unit-variance
with backpropagation

— Note: This is not re-initialization to random values,
rather the current weights are updated

* Reduces the effects of weight normalization and
enforces regularization leading to faster learning

— More effective than drop-out
— No need for “pre-training”

 Available in Keras!

Sergey loffe and Christian Szegedy. Batch Normalization: Accelerating Deep Network Training
by Reducing Internal Covariate Shift. arXiv preprint arXiv:1502.03167v3, 2015.

CIS 622: Machine Learning in Bioinformatics PIEAS Biomedical Informatics Research Lab 7

Computational Graphs

 Making a generic package for multi-layer
neural networks requires

— An abstract way of representing various
computational operations involved in the network

— Distributed Evaluations
— Calculation of gradients

 Computational Graphs allow us to do all this!

CIS 622: Machine Learning in Bioinformatics PIEAS Biomedical Informatics Research Lab

Computational Graphs

 CGs are an easy way to think about
mathematical expressions

* Formalizes the idea of neural networks and
generalizes backpropagation and makes it
computationally efficient

 The “compile” in keras builds a Computational
Graph for the Network (can take time!)

CIS 622: Machine Learning in Bioinformatics PIEAS Biomedical Informatics Research Lab 9

Example
dz _ dzdy dx
e Differentiation via the z=f (f(f(w))) dw dy dx dw
chain rule can be
represented as the
computational graph

* Symbolic derivatives
e Parallelization

— Compute independent
components in parallel

* Avoiding re-

computation
— Re-use symbolic Figure 6.10: An example of the symbol-to-symbol approach to computing derivatives. In
derivatives this approach. the back-propagation algorithm does not need to ever access any actual

specific numeric values. Instead. it adds nodes to a computational graph describing how
— Store previous values to compute these derivatives. A generic graph evaluation engine can later compute the
derivatives for any specific numeric values. (Left)In this example, we begin with a graph

representing z = f(f(f(w))). (Right)We run the back-propagation algorithm. instructing
. . . 1= .
it to construct the graph for the expression corresponding to 5=. In this example, we do

not explain how the back-propagation algorithm works. The purpose is only to illustrate
what the desired result is: a computational graph with a symbolic description of the
derivative.

CIS 622: Machine Learning in Bioinformatics PIEAS Biomedical Informatics Research Lab 10

The magic of computational graphs

oy
/ \ ./ \.

®/ '\®/' ./' '\/'

de 86 de

ad de _ .

8b od

dc ad de B
p’ h Q’ g’

reverse-mode differentiation

CIS 622: Machine Learning in Bioinformatics PIEAS Biomedical Informatics Research Lab 11

http://colah.github.io/posts/2015-08-Backprop/

The magic of computational graphs

Forward-mode differentiation gave us the derivative of
our output with respect to a single input, but reverse-
mode differentiation gives us all of them.

For this graph, that’s only a factor of two speed up, but
imagine a function with a million inputs and one
output.

Forward-mode differentiation would require us to go
through the graph a million times to get the
derivatives.

Reverse-mode differentiation can get them all in one
fell swoop!

A speed up of a factor of a million is pretty nice!

CIS 622: Machine Learning in Bioinformatics PIEAS Biomedical Informatics Research Lab

12

Practical Example

J = e+ A Z(H*l) (n*)

1,7 i,

CIS 622: Machine Learning in Bioinformatics PIEAS Biomedical Informatics Research Lab 13

Origins of Deep Learning

Year Contributer Contribution
introduced Associationism, started the history of human’s

300 BC Aristotle attempt to understand brain.
: introduced Neural Groupings as the earliest models of
1873 Alexander Bain neural network, inspired Hebbian Learning Rule.
1943 MecCulloch & Pitts introduced MCP Model, which is considered as the

ancestor of Artificial Neural Model.

considered as the father of neural networks, introduced
1949 Donald Hebb Hebbian Learning Rule, which lays the foundation of
modern neural network.
introduced the first perceptron, which highly resembles

1958 Frank Rosenblatt

modern perceptron.
1974 Paul Werbos introduced Backpropagation
1980 Teuvo Kohonen introduced Self Organizing Map

introduced Neocogitron, which inspired Convolutional
Neural Network
1982 John Hopfield introduced Hopfield Network
1985 Hilton & Sejnowski introduced Boltzmann Machine

introduced Harmonium, which is later known as Restricted
Paul Smolensky

Kunihiko Fukushima

1986 Boltzmann Machine
Michael I. Jordan defined and introduced Recurrent Neural Network
1990 Yann LeCun introducec_i LeNet? showed the possibility of deep neural
networks in practice
1997 Schuster & Paliwal introduced Bidirectional Recurrent Neural Network
Hochreiter & introduced LSTM, solved the problem of vanishing

Sehmidbinher oradient in rectirrent neniral networl-o 14

Origins of Deep Learning

introduced Deep Belief Networks, also introduced
2006 Geoffrey Hinton layer-wise pretraining technique, opened current deep
learning era.

Salakhutdinov &

2009 _ introduced Deep Boltzmann Machines
Hinton

9012 Geoffrey Hinton introduced Dropout, an efficient way of training neural
networks
introduced Variational Autoencoder (VAE), which may

2013 Kingma & Welling bridge the field of deep learning and the field of Bayesian
probabilistic graphic models.

2014 [an J. Goodfellow introduced Generative Adversarial Network.

2015 loffe & Szegedy introduced Batch Normalization

Wang, Haohan, and Bhiksha Raj. “On the Origin of Deep Learning.” arXiv:1702.07800 [Cs, Stat], February 24, 2017.
http://arxiv.org/abs/1702.07800.

CIS 622: Machine Learning in Bioinformatics PIEAS Biomedical Informatics Research Lab 15

Modern Practices

 Deep Convolutional Neural Networks
* Residual Networks

* Generative Models
— Auto-encoders: VAE, NAE
— Generative Adversarial Networks
— Recurrent Neural Networks
* Recurrent Models
— RNN
— LSTM
* Transfer Learning

e Zero and One-shot learning

CIS 622: Machine Learning in Bioinformatics PIEAS Biomedical Informatics Research Lab 16

End of Lecture-1

We want to make a machine that will be
proud of us.

- Danny Hillis

CIS 622: Machine Learning in Bioinformatics PIEAS Biomedical Informatics Research Lab

17

