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Topics Covered

• Revision of SVM

• Principles of SVM

– Structural Risk Minimization

• Introducing the family of large margin classifiers

– Classification

– Regression

– Ranking

– Multi-class prediction

– Multi-label prediction

– Structured output prediction
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Primal

• Question: When does an example violate the margin?
– When: 𝜁𝑖 > 0
– Equivalently: 𝑦𝑖𝑓 𝒙𝒊 < 1 or 1 − 𝑦𝑖𝑓 𝒙𝒊 > 0
– Thus, 𝜁𝑖 = max(0,1 − 𝑦𝑖𝑓 𝒙𝒊 )

• What if I remove “C” and multiply 𝜆 with 𝒘𝑻𝒘 ?
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Dual
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• The dual for of the SVM is obtained by 
substituting the KKT conditions into the primal 
and inverting the order of the maximization 
and minimization

– If the solution exists then, at the optimal point, 
the value of the primal and the dual are the same

𝒘 =

𝑖=1

𝑁

𝛼𝑖𝑦𝑖𝒙
(𝑖)

𝑓 𝑥 = 𝑏 +

𝑖=1

𝑁

𝛼𝑖𝑦𝑖𝐾 𝒙, 𝑥 𝑖



CIS 621: Machine Learning PIEAS Biomedical Informatics Research Lab

C

• Some Observations
– αi will be non-zero (positive) only for the points 

that are support vectors

– 0 ≤ αi ≤ C

– C is the weight of the penalty of the term 
representing margin violation 
• If C is small, then more margin violations will occur

• If C is large, lesser margin violations will result
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VC Dimension

• What’s the maximum number of arbitrarily 
labeled non-colinear distinct points in space 
that can always be separated by a linear 
classifier?
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Structural Risk Minimization
• Vapnik and Chervonekis, 1974 showed that 

• To reduce the error on test data we must reduce 

– Training Error

– Complexity (capacity or freedom) of the 
model

• However, these are, often, conflicting objectives

• Example

– Nearest Neighbor

• Zero Training Error

• Infinite Complexity/Capacity

– Linear Classifier

• Low capacity

• High training error on data that is not 
linearly separable

7

VC Dimension

Test Error ≤ Training Error + Complexity of set of Models
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Margin and VC Dimensions

• The VC Dimension of the hyper-plane in d-dimensional 
space with margin 𝜌 is bounded by:

– h 𝜌 ≤ 𝑚𝑖𝑛 1 +
𝐷𝟐

4𝝆𝟐
, 𝑑

– D is the diameter of the smallest sphere containing the 
training data points

– Vapnik (1998, theorem 8.4)

• High VC Dimensions
– Large d
– Large D (can be normalized)
– Small margin

• This is the basis for the theory for why margin needs 
to be controlled, especially in high dimensions

8

𝝆

𝐷 = 2
𝑑 = 2
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Margin and VC Dimensions

• SVM separates points using a “slab” of a certain width 
called the margin

• Large margin means 
– Large “slab” Which means

• Lesser freedom to move the line

– Lesser points can be shattered

» Smaller VC Dimension

– It’s more difficult to cross a bigger moat by accident

9
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Understanding SRM

Vapnik Proved that

Test Error ≤ Training Error + Complexity of set of Models

Specifically,
Given 𝑁 training points, then with probability 1 − 𝑝

𝑇𝑒𝑠𝑡 𝐸𝑟𝑟𝑜𝑟 ≤ 𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝐸𝑟𝑟𝑜𝑟 +
𝑙𝑜𝑔 2𝑚 + 1

𝑚
−
𝑙𝑜𝑔 Τ𝑝 4

𝑁

• Where
• 𝑚 =

𝑁

ℎ
, ℎ = 𝑉𝐶 𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛

• For SVM: ℎ 𝜌 ≤ 𝑚𝑖𝑛 1 +
𝐷𝟐

4𝝆𝟐
, 𝑑 , d is dimensionality

• 𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝐸𝑟𝑟𝑜𝑟 =
1

2𝑁
σ𝑖=1
𝑁 𝑦𝑖 − 𝑓 𝒙𝒊; 𝜃

• 𝑇𝑒𝑠𝑡 𝐸𝑟𝑟𝑜𝑟 =
1

2
 𝑦 − 𝑓 𝒙; 𝜃 𝑑𝑃 𝒙, 𝑦

– Generalization Error

10

Complexity Error increases with VC 
but decreases with N

VC dimension decreases  with margin 
but increases with feature dimensionality

Complexity Error decreases with increase in margin
Also decreases with increasing N

Increases with increasing d

Effective Control over curse of dimensionality
with large margin: small N and large d 

seem to matter less
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Structural Risk Minimization

• Thus, to optimize the generalization of a 
classifier

– Reduce Training Error

– Reduce Classifier Complexity

• By margin maximization

• Mathematically,

11

𝑓∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝑓 𝐿 𝑋, 𝑌; 𝑓 + 𝜆𝑔 𝑓

𝑋, 𝑌 is the training data
𝑓 is the learning function

Regularization 

Classifier Complexity
(smoothing) term

Empirical Loss (or  risk) 

termStructural Risk



CIS 621: Machine Learning PIEAS Biomedical Informatics Research Lab

SVM and SRM
• For SVM

• We can represent It as:

– 𝒎𝒊𝒏𝒘,𝒃
𝝀

𝟐
𝒘 𝟐 + σ𝒊=𝟏

𝑵 𝒎𝒂𝒙 𝟎, 𝟏 − 𝒚𝒊 𝒘
𝑻𝒙𝒊 + 𝒃

• SVM can be mapped to the form :
• 𝑓 𝒙 = 𝒘, 𝒙 is the discriminant function 

– kernel trick allows non-linear classification

• 𝐿 𝑋, 𝑌; 𝑓 = σ𝒊=𝟏
𝑵 1 − 𝑦𝑖 𝒘, 𝒙𝒊 +

– 𝜃 + = 𝜃 𝑓𝑜𝑟 𝜃 ≥ 0 𝑎𝑛𝑑 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

– Hinge loss function

• 𝑔 𝑓 = 𝒘 𝟐
𝟐

• This setting allows for convex optimization

– Single local and global minima

12

𝑓∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝑓 𝐿 𝑋, 𝑌; 𝑓 + 𝜆𝑔 𝑓

𝑦𝑖𝑓 𝒙𝒊
1

𝑙𝑖 = 1 − 𝑦𝑖𝑓 𝒙𝒊 +



CIS 621: Machine Learning PIEAS Biomedical Informatics Research Lab

SVM, SRM, Margin and Complexity

• SVMs are learning machines that reduce structural 
risk (Vapnik, 1961) by

– Reducing the empirical error

– Controlling complexity of the classifier
• Through the control on the upper bound on the VC dimension 

(remember Vapnik, 1995: 𝐕𝐂 𝝆 ≤
𝑫𝟐

𝟒𝝆𝟐
)

– By maximizing the margin: 
𝟏

𝒘 𝟐

• The reduction in structural risk minimizes the upper 
bound on the generalization error (Vapnik and 
Chervonekis, 1974)

– This leads to good generalization performance

13



𝒊=𝟏

𝑵

𝒎𝒂𝒙 𝟎, 𝟏 − 𝒚𝒊 𝒘
𝑻𝒙𝒊 + 𝒃



CIS 621: Machine Learning PIEAS Biomedical Informatics Research Lab

What can we do with SRM?

• The principal of SRM allows us to develop a family of large margin 
learning machines by changing its components

• Example

– SVM: 𝒎𝒊𝒏𝒘,𝒃
𝜆

2
𝒘 𝟐 + σ𝒊=𝟏

𝑵 1 − 𝑦𝑖𝑓 𝒙𝒊 +

– Regularized least square regression

• 𝒎𝒊𝒏𝒘,𝒃
𝝀

𝟐
𝒘 𝟐 + σ𝒊=𝟏

𝑵 𝑦𝑖 − 𝑓 𝒙𝒊
𝟐

– Support Vector Regression

• 𝒎𝒊𝒏𝒘,𝒃
𝝀

𝟐
𝒘 𝟐 + σ𝒊=𝟏

𝑵 𝑦𝑖 − 𝑓 𝒙𝒊 − 𝜖 +

– Feature selection

• 𝒎𝒊𝒏𝒘,𝒃
𝜆

2
𝒘 1

2 + σ𝒊=𝟏
𝑵 1 − 𝑦𝑖𝑓 𝒙𝒊 +

14
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Regularizers

• There are also other regularizers

– 𝒘 𝟐
𝟐 = 𝑤1

𝟐 + 𝑤2
𝟐 +⋯+𝑤𝑑

𝟐

• Convex, Smooth

– 𝒘 𝟏
𝟏 = 𝒘𝟏 + 𝒘𝟐 +⋯+ 𝒘𝒅

• Used for feature reduction

• “1-norm Support Vector Machine”, Zhu et al. (2004)

– 𝒘 𝟎 = 𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒏𝒐𝒏 − 𝒛𝒆𝒓𝒐 𝒆𝒍𝒆𝒎𝒆𝒏𝒕𝒔 𝒊𝒏 𝒘

• Minimization of this norm will lead to feature selection

• “Use of the Zero-Norm with Linear Models and Kernel Methods”, JMLR, 
Weston et al., (2003)

15
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Generalization Performance bounds

• The leave one out cross validation error of an 
SVM is bounded as:

16
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A tighter bound on LOO Error: Vapnik 2000

• Error is the leave one out error
• E indicates the expected value
• n = m + n* is the number of support vectors

– n* = number of support vectors for which 𝟎 < 𝜶 < 𝑪
– m = number of support vectors for which 𝜶 = 𝑪

• l = number of examples
• S: The span is the largest distance of any support vector from its approximation based on a constrained 

linear combination of all other support vectors
• D is the diameter of the largest sphere containing the data points
• C is the margin violation parameter

17
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Impact of bounds

• These bounds can be used for 
model selection

– Choosing the value of 
sigma in the RBF kernel or 
the ‘C’ parameter

• The time required to compute 
the span is not prohibitive and 
is a good alternative to 
computing the true leave one 
out error for model selection 
purposes

18

V. Vapnik and O. Chapelle, “Bounds on 
Error Expectation for Support Vector 
Machines,” Neural Comput, vol. 12, no. 9, 
pp. 2013–2036, Sep. 2000.
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What are kernels?

• Kernels are

– A way of Data representation

– Inner Products

– Measures of similarity

– Measures of function regularity

19
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Data Representation: Kernels

• Advantages of kernel representation

– Nonlinear Feature Mapping

– Always of size n x n

• Computationally very attractive

– No need of explicit feature representation

• Example
– No obvious way to represent protein sequences as vectors in a 

biologically relevant way

– Meaningful pairwise sequence comparison methods exist

– Is the Local alignment score a kernel?

20
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Representer theorem

• (Schölkopf, LNCS, 2001) 

• Any problem represented as follows with a strictly 
monotonically increasing function ‘g’ and an 
arbitrary risk function ‘L’

• Has a solution of the form 

– 𝑓∗ 𝑥 = σ𝑖=1
𝑁 𝛼𝑖𝑘 𝑥, 𝑥𝑖

– 𝑘 𝑥, 𝑥𝑖 is the kernel function used

• How do SVMs satisfy the Representer theorem?

21

𝑓∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝑓 𝐿 𝑋, 𝑌; 𝑓 + 𝜆𝑔 𝑓



CIS 621: Machine Learning PIEAS Biomedical Informatics Research Lab

Representer theorem

• The Representer theorem allows us to represent 
the decision function of any learning machine 
with a regularizer and an empirical loss function 
in terms of the  data points alone

• This, has great implications in solving the 
optimization problems posed by different 
learning algorithms 

22

𝑓∗ 𝑥 =

𝑖=1

𝑁

𝛼𝑖𝑘 𝑥, 𝑥𝑖
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Kernels, Regularization and the Curse of dimensionality

• How does the SVM control the curse of dimensionality?

• We know that we can also express the function as

• Thus, 𝒇 = 𝜶𝑻𝑲𝜶

• Now, regularization requires that we minimize 𝒇 , which will, in essence, 
produce a small set of non-zero 𝜶

• The number of positive 𝜶 controls the number of effective dimensions in 
the kernel space

• Thus, regularization allows effective control over the curse of 
dimensionality when using kernels

– This is one reason why the generalization performance of SVMs is 
dependent on the number of support vectors

23

𝒇 𝒙 = σ𝒊=𝟏
𝑵 𝜶𝒊𝑲 𝒙𝒊, 𝒙
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Allows Learning 

from Data

Minimize Empirical 

Error over Training 

Data

Minimize Model 

Complexity

Through 

Regularization of the 

decision functional

Reduces bias errors

Promotes sparse 

solutions

Controls effective 

data dimensionality

Limits effects of 

curse of 

dimensionality

Smooth decision 

functions

Reduces variance 

errors

Handling of 

nonlinear boundaries 

in controlled manner

Implicit feature 

representation in 

terms of pairwise 

similarities

Margin 

Maximization

Allows the use of 

kernels

Scholkopf

Representer’s theorem

Mercer’s Conditions

Underlying feature 

representation in 

RKHS

Moore-Aronszajn Theorem

Provides upper 

bound on 

generalization error

Vapnik and Chervonekis, 1974

Control of VC 

dimension

Vapnik (1995)Generalization to 

different types of data 

(even non-vectoral), 

learning problems & 

algorithms for solution

C or 𝝀 Cortes, 1995
Structural Risk 

Minimization

Vapnik, 1961

Control of Bias Variance Dilemma
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Reasons for using a SVM
• Use of structural risk minimization 

– Reduction of empirical error

– Reduction of complexity

• Tunable Complexity

• Effects of curse of dimensionality is reduced due to the control over complexity

• Can have linear or non-linear boundaries through kernels

• Kernels allow use of implicit feature representation

• Absence of local minima

• Sparseness of the solution: Not every data point is required – only support vectors determine the solution

• Guaranteed error bounds

• Very flexible to different types of problems in machine learning

– Multiple instance, ranking, multi-view, regression, clustering, structured output learning …

– Can be molded to explicitly optimize performance metrics such as AUC, 𝑨𝑼𝑪𝜶→𝜷

• Allow for large scale learning: 

– O(n) algorithms exist for linear boundaries – n is the number of examples

– 𝑶
𝒅

𝝀𝝐
algorithms exist for linear boundaries to achieve an 𝝐 accurate solution

• d is the number of non-zero feature vectors, 𝝀 is the regularization parameter

25
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Issues with SVMs
• Perhaps the biggest limitation of the support vector approach lies in choice of the kernel."

Burgess (1998)

• "A second limitation is speed and size, both in training and testing."
Burgess (1998)

• "Discete data presents another problem..."
Burgess (1998)

• "...the optimal design for multiclass SVM classifiers is a further area for research."
Burgess (1998)

• "Although SVMs have good generalization performance, they can be abysmally slow in test phase, a problem addressed in 
(Burges, 1996; Osuna and Girosi, 1998)."
Burgess (1998)

• "Besides the advantages of SVMs - from a practical point of view - they have some drawbacks. An important practical 
question that is not entirely solved, is the selection of the kernel function parameters - for Gaussian kernels the width 
parameter [sigma] - and the value of [epsilon] in the [epsilon]-insensitive loss function...[more]"
Horváth (2003) in Suykens et al.

• "However, from a practical point of view perhaps the most serious problem with SVMs is the high algorithmic complexity 
and extensive memory requirements of the required quadratic programming in large-scale tasks."
Horváth (2003) in Suykens et al. p 392

• Kernels determine regularization so the choice of a kernel makes the SVM prone to over-fitting

26
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Required Reading

• C. J. C. Burges, “A Tutorial on Support Vector 
Machines for Pattern Recognition,” Data Min 
Knowl Discov, vol. 2, no. 2, pp. 121–167, Jun. 
1998.
– Cited by: 14248

• Optional
• Zhang, ChunHua, YingJie Tian, and NaiYang Deng. “The New Interpretation of Support Vector Machines on 

Statistical Learning Theory.” Science in China Series A: Mathematics 53, no. 1 (January 28, 2010): 151–64. 
doi:10.1007/s11425-010-0018-6.

• Abe, Prof Dr Shigeo. “Variants of Support Vector Machines.” In Support Vector Machines for Pattern 
Classification, 163–226. Advances in Pattern Recognition. Springer London, 2010. 
http://link.springer.com/chapter/10.1007/978-1-84996-098-4_4.

• Section-III: Constructing Kernels in J. Shawe-Taylor and N. Cristianini, Kernel Methods for Pattern Analysis. 
New York, NY, USA: Cambridge University Press, 2004.

• J. Vert, K. Tsuda, and B. Scholkopf, “A primer on kernel methods,” in Kernel Methods in Computational 
Biology, MIT Press, 2004, pp. 35–70.
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Assignment (20 Marks)
1. If an example does not violate the margin and does not lie on the margin what will be its αi? Why? [1]

2. If an example violates the margin, what will be its αi? Why? [1]

3. If an example lies exactly on the margin, what will be its αi? Why? [1]

4. What is the relationship between αi of the dual and 𝝃𝒊 of the primal for an example 𝒊? [1]

5. How has the Representer’s theorem been used to solve the SVM problem in the primal in the paper given 
below? [2]

O. Chapelle, “Training a Support Vector Machine in the Primal,” Neural Comput, vol. 19, no. 5, pp. 1155–
1178, May 2007.

6. What is the Gram matrix? [1]

7. Why should a kernel satisfy the Mercer’s conditions? [1]

8. If a kernel doesn’t satisfy Mercer’s conditions, will the corresponding SVM be convex? [1]

9. What happens we choose ||w||1 or ||w||0 instead of ||w||2 in the optimization? How? [1]

10. What happens if we choose σ𝒊 𝝃𝒊
𝟐 instead of σ𝒊 𝝃𝒊 in the optimization and remove the constraints 𝝃 ≽ 𝟎? [2]

11. How does margin maximization lead to better generalization? Explain in terms of Structural Risk Minimization. 
[1]

12. How is the Representer Theorem Useful? [1]

13. What are the error bounds of an SVM useful for? [1]

14. How can you create a bias-less SVM Without any loss in accuracy? [1]

15. What is meant by a regularization path? [1]

16. How can you make a kernelized Nearest Neighbor Classifier? [1.5]

17. How can you make a regularized nearest neighbor classifier? [1.5]

18. Why does the generalization error bound increase with increase in the number of support vectors? [1]

28
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End of Lecture

I believe that learning has just started, because 
whatever we did before, it was some sort of a classical 

setting known to classical statistics as well. Now we 
come to the moment where we are trying to develop a 

new philosophy which goes beyond classical models.
- Vapnik

http://www.learningtheory.org/learning-has-just-started-an-interview-with-prof-vladimir-vapnik/

http://www.learningtheory.org/learning-has-just-started-an-interview-with-prof-vladimir-vapnik/

