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Classification 

• Thus the Objective of Classification is to assign 
class labels  

• to a given feature vector x through a classifier 

• The classifier may use previously known and 
available training data 

– Good generalization, Good memorization 

• The training data comprises of classified data 
points: 
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Discriminant based classification 

• In this type of classification, the objective is to learn a function or, in 
the case of more than 2 classes, a set of functions from training data 
which can generate decisions for test data such that the classes in the 
data can be separated 

– 𝑐 𝒙 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑘=1,…,𝑀 𝑓𝑘 𝒙  

• 𝑓𝑘 𝒙  tells you the ‘k-classiness’ of 𝒙 

– If M = 2 
• Choose class-1 if 𝑓1 𝒙 ≥ 𝑓2 𝒙 , i.e., 𝑓1 𝒙 − 𝑓2 𝒙 ≥ 0 

• Otherwise assign it to class-2 

• We can thus replace the two functions with a single function 

– 𝑓 𝒙 = 𝑓1 𝒙 − 𝑓2 𝒙  

– Assign to positive class if 𝑓 𝒙 ≥ 0, otherwise negative 

– 𝑓 𝒙 = 0 separates the two classes and is called the discriminant 

– If the function(s) are linear, the classifier is called a linear discriminant 
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Example 
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𝒙𝟏: Size of smile 

𝒙𝟐: Sparkle in eyes 

𝑓 𝒙 =0 

𝑓 𝒙 >0 

𝑓 𝒙 <0 

𝒙 =
6
2
, y = +1 

𝒙 =
0
0
, y = −1 
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Another example 
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(0,0) (1,0) 

(0,1) (1,1) 
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Question? 

• How did we come up with that function? 
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Linear Separability 

• Is this classification problem linearly 
separable? 

– Why? 

– Can you prove it? 
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Let’s talk about: Linear Separability 

• What about this one? 
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One way 

• Plot the data 

• Draw a line that 
separates the two 
classes  

• Find its intercepts 

• Use the two point 
form to come up 
with the equation 
of the line 
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0
0
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What’s the problem? 

• What if we have more than 2, 3 dimensions? 

• What if the data is not linearly separable? 

• And of course one can draw multiple lines 
which separate the two classes… 

– Which one is the best? 

• And its cheating… 

– The machine didn’t learn it on its own 
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How to find the line? 

• Use the perceptron algorithm 
– Rosenblatt (1962) 

– Minsky and Papert (1969, 1988) 

– This algorithm provides theoretical 
guarantees of convergence to a 
correct separating boundary 
• If the data is linearly separatable and 

you allow the pereceptron algorithm 
to run long enough, you will find the 
separating line! 

• Perceptron Learning Rule 
Convergence Theorem 
– See Faucett 2006 
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Perceptron: Architecture/Representation 

• Bipolar or Binary Input 

• Bipolar Target 
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 Thus there are two hyperplanes) 

 H+: WTX+b=θ  

 H-: WTX+b=-θ 
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Update Occurs only when 
there is an error 

If output is -1 and target is 
+1, we must increase the 
net input: Achieves this by 
increasing weight by alpha 
when if the input is +1 or 
decreasing weight if the 
input is -1 or not changing 
it when input is 0 

 
 

Epoch 

Fausett, Laurene. Fundamentals of Neural Networks: Arquitectures, Algorithms, and Applications. Pearson Education, 2006. 
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Example: AND Gate, θ=0.2, α=1 

x1 x2 1 ynet y T dw1 dw2 db w1= w1+dw1 w2= w2+dw2 b=b+db 

0 0 0 

1 1 1 0 0 1 1 1 1 1 1 1 

1 0 1 2 1 -1 -1 0 -1 0 1 0 

0 1 1 1 1 -1 0 -1 -1 0 0 -1 

0 0 1 -1 -1 -1 0 0 -1 0 0 -1 

1 1 1 -1 -1 1 1 1 1 1 1 0 

1 0 1 1 1 -1 -1 0 -1 0 1 -1 

0 1 1 0 0 -1 0 -1 -1 0 0 -2 

0 0 1 -2 -1 -1 0 0 -1 0 0 -2 

1 1 1 -2 -1 1 1 1 1 1 1 -1 

1 0 1 0 0 -1 -1 0 -1 0 1 -2 

0 1 1 -1 -1 -1 0 -1 -1 0 1 -2 

0 0 1 -2 -1 -1 0 0 -1 0 1 -2 

1 1 1 -1 -1 1 1 1 1 1 2 -1 

1 0 1 0 0 -1 -1 0 -1 0 2 -2 

0 1 1 0 0 -1 0 -1 -1 0 1 -3 

0 0 1 -3 -1 -1 0 0 -1 0 1 -3 

1 1 1 -2 -1 1 1 1 1 1 2 -2 

1 0 1 -1 -1 -1 -1 0 -1 1 2 -2 

0 1 1 0 0 -1 0 -1 -1 1 1 -3 

0 0 1 -3 -1 -1 0 0 -1 1 1 -3 
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x1 x2 1 ynet y T dw1 dw2 db w1= w1+dw1 w2= w2+dw2 b=b+db 

1 1 -3 

1 1 1 -1 -1 1 1 1 1 2 2 -2 

1 0 1 0 0 -1 -1 0 -1 1 2 -3 

0 1 1 -1 -1 -1 0 -1 -1 1 2 -3 

0 0 1 -3 -1 -1 0 0 -1 1 2 -3 

1 1 1 0 0 1 1 1 1 2 3 -2 

1 0 1 0 0 -1 -1 0 -1 1 3 -3 

0 1 1 0 0 -1 0 -1 -1 1 2 -4 

0 0 1 -4 -1 -1 0 0 -1 1 2 -4 

1 1 1 -1 -1 1 1 1 1 2 3 -3 

1 0 1 -1 -1 -1 -1 0 -1 2 3 -3 

0 1 1 0 0 -1 0 -1 -1 2 2 -4 

0 0 1 -4 -1 -1 0 0 -1 2 2 -4 

1 1 1 0 0 1 1 1 1 3 3 -3 

1 0 1 0 0 -1 -1 0 -1 2 3 -4 

0 1 1 -1 -1 -1 0 -1 -1 2 3 -4 

0 0 1 -4 -1 -1 0 0 -1 2 3 -4 

1 1 1 1 1 1 1 1 1 2 3 -4 

1 0 1 -2 -1 -1 -1 0 -1 2 3 -4 

0 1 1 -1 -1 -1 0 -1 -1 2 3 -4 

0 0 1 -4 -1 -1 0 0 -1 2 3 -4 
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Example: AND Gate, θ=0.2, α=1… 

• Final Decision Boundary 
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Questions on Perceptron Algorithm 

• Representation 

• Evaluation 

• Optimization 

• What is the role of α? 

 

• Videos 
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Assignment 2A 

• Implement the Perceptron Training Algo 

• Test it for AND, OR and XOR gates 
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Solving XOR using Perceptron 

• BONUS MARKS 

– How can you solve this problem using a 
perceptron? 
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Let’s talk about: Freedom for the classifier 

• If we remove some training 
data will this increase the 
freedom of the classifier? 

– Depends which data you 
remove 

• But it can be said safely that: 

– Removing data wont 
decrease the freedom 

– Adding data wont 
increase the freedom 
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Factors affecting discriminants 

• Linear Separability 

• Freedom of the classifier 

• Number of dimensions 

• Capacity 

21 
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Let’s talk about: Freedom for the classifier 

• Is freedom bad? 

– Too much freedom 
decreases the 
generalization of the 
classifier 

– But then, what is the 
optimal classifier and 
why? 
• One with maximum margin is 

optimal 

• Because it decreases the 
chances of error given the 
training data, i.e., it’s the 
rational choice (not the 
omnicient one!) 

– This is an AI principle 
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Number of dimensions 

• Typically an example can have a large number 
of features (hundreds and even infinite!) 

– Some may not even be relevant (but we wouldn’t 
know that!) 

• In high dimensional spaces 

– Curse of dimensionality occurs 

• We have only a finite number of data samples 

• If the dimensions is large, our classifier may not 
generalize well: Technically this is called ‘Hughes Effect’ 
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Capacity 

• What’s the maximum number of arbitrarily 
labeled distinct points space that can always 
be separated by a linear classifier? 

– Let’s call this number ‘capacity’  

• technical name: Vapnik-Chervonenkis (VC) dimension 
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Capacity 

• 2 Dimensional Data 

– Can “shatter” 3 points 

– Can we shatter 4? 

– What is the VC dimension of a linear classifier in 
2D? 
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Capacity 

• What is the capacity of a nearest neighbor 
classifier? 

• Are classifiers with more capacity better? 

• What classifiers will suffer from over-fitting? 

• What classifiers will suffer more from the 
curse of dimensionality? 
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Linear Separability & Freedom 

• Nearest neighbor classifier has infinite 
capacity. But high capacity means that it can 
learn everything (including errors and noise) 
and can have lower generalization. We want 
good capacity but only as much as needed for 
the task. 

• Can we control capacity? 

– SVM does it 
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SVM: Linear Classifier that allows 

• Low error on training data 

• Maximum margin 

– Limited freedom 

• Lower errors when amount of data is 
small 

• Lower errors in high dimensions 

• Controlled capacity 

– What about non-linear boundaries? 

• Kernel trick 
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Vladimir Vapnik 
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To Do 

• Reading 
– Fausett 2006: Sections 2.1  and 2.3 
– Alpaydin Chapter 2: Sections 2.1, 2.2, 2.4, 2.5 (Discriminant 

Learning) 
– Alpaydin Chapter 10: Sections 10.1, 10.2, 10.3, 10.4 (Linear 

Discriminants) 

 
• Quiz Next Lecture 

 
• BONUS MARKS 

– Solve this problem: 
• You are given a string of length L 
• You are to tie a rectangular gift box (l x w x h) with a 

constant or fixed width ‘w’ using any length of this string 
(up to L) 

• What are the dimensions of the largest such box? 
– First try to solve it intuitively and then try proving it 

mathematically. At least, represent this problem 
mathematically. 
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End of Lecture 

No computer has ever been designed 
that is ever aware of what it's doing; 

but most of the time, we aren't either. 
-Marvin Minsky 

If you just have a single problem to solve, then fine, go 
ahead and use a neural network. But if you want to do 
science and understand how to choose architectures, or 
how to go to a new problem, you have to understand what 
different architectures can and cannot do. 

Marvin Minsky 
 

http://www.brainyquote.com/quotes/authors/m/marvin_minsky.html
http://www.brainyquote.com/quotes/authors/m/marvin_minsky.html

