

Regression

Dr. Fayyaz ul Amir Afsar Minhas

PIEAS Biomedical Informatics Research Lab

Department of Computer and Information Sciences

Pakistan Institute of Engineering & Applied Sciences

PO Nilore, Islamabad, Pakistan

http://faculty.pieas.edu.pk/fayyaz/

Regression

- Estimate the relationship among variables
 - Dependent variables
 - Independent variables
- Used in prediction and forecasting
- Mathematical formulation
 - Model: $Y = f(X; w) + \epsilon$
 - Linear

•
$$f(\mathbf{x_i}) = b + w_1 x_i^{(1)} + w_2 x_i^{(2)} + \dots + w_d x_i^{(d)}$$

Objective is to estimate the parameters w

x	У
1	3.5
2	4.75
3	7.05
4	9.5

Linear Regression

•
$$f(\mathbf{x}_i) = b + w_1 x_i^{(1)} + w_2 x_i^{(2)} + \dots + w_d x_i^{(d)}$$

$$\mathbf{w'}_{((d+1)\times 1)} = \begin{bmatrix} w_1 \\ w_2 \\ \vdots \\ w_d \end{bmatrix}$$

- This implies
 - $f(x_i) = [x_i^T \quad 1]w'$
 - Note that we do not have an explicit bias term anymore
- For N points with

$$- y_1 = f(x_1) = [x_1^T \ 1]w'$$

$$- y_2 = f(x_2) = [x_2^T \quad 1]w'$$

$$- y_N = f(x_N) = [x_N^T \quad 1b]$$

- In Matrix form
 - y = Xw'

$$\boldsymbol{X}_{(N\times(d+1))} = \begin{bmatrix} x_1^{(1)} & x_1^{(2)} & \cdots & x_1^{(d)} & 1 \\ x_2^{(1)} & x_2^{(2)} & \cdots & x_2^{(d)} & 1 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ x_N^{(1)} & x_N^{(2)} & \cdots & x_N^{(d)} & 1 \end{bmatrix}$$

$$\mathbf{y}_{(N\times 1)} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_N \end{bmatrix}$$

Linear Regression

It can also be written as:

$$-Xw'=y$$

 If X is square (N=d+1) then the solution to the above equation is

$$-w'=X^{-1}y$$

$$-X = \begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix}, y = \begin{bmatrix} 3.5 \\ 4.75 \end{bmatrix}$$

- Thus:
$$w' = \begin{bmatrix} 1.25 \\ 2.25 \end{bmatrix}$$

x	У
1	3.5
2	4.75

Linear Regression: Least Squares solution

- However, having a square X is very restrictive
- If X is not square, we can use a pseudo-inverse

$$Xw' = y$$

$$X^{T}Xw' = X^{T}y$$

$$w' = (X^{T}X)^{-1}X^{T}y$$

$$w' = X^{+}y$$

- $X^+ = (X^T X)^{-1} X^T$ is the pseudo-inverse
- Used to solve over-determined systems
 - More constraints than parameters

Linear Regression: Least Squares solution

- Compute the pseudo-inverse and plot
- Note that the line isn't passing through all points

x	У
1	3.5
2	4.75
3	7.05
4	9.5
	•••

Properties of the least-squares solution

- The previous line represents a least squares (LS) solution to the regression problem
- It minimizes the mean square error of the prediction
- The mean square error resulting from a specific weight vector can be written as (ignoring bias):

$$- E(w) = \frac{1}{N} \sum_{i=1}^{N} (f(x_i) - y_i)^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i^T w - y_i)^2$$

Thus the LS learning problem can written as:

$$min_{\boldsymbol{w}}\boldsymbol{E}(\boldsymbol{w}) = \frac{1}{N} \sum_{i=1}^{N} (x_i^T \boldsymbol{w} - y_i)^2$$

- In Matrix form, $E(w) = \frac{1}{N}(Xw y)^T(Xw y)$
- If we differentiate E(w) with respect to w and substituting it to zero we get:
 Xw = y
 - We can now solve for w to get a closed form least square solution

Least squares visualized

- The thick red lines indicate the error corresponding to each data point
- Least square solution minimizes the sum of the square lengths of all red lines

Problems with least squares solution

- Due to squaring of the error of each data point the least square solution is very sensitive to outliers
- It gives only a linear solution

Support Vector Regression

Hard Form

- All errors must be within a user specified threshold
- Minimize the norm of the weight vector

$$egin{aligned} & \min_{w,b} \|w\|^2 \ & \text{Such that for all } i=1\dots N: \ & \left|\left(w^Tx_i+b\right)-y_i \; \right| \leq \epsilon \end{aligned}$$

Support Vector Regression

- Soft Form
 - Errors must be within a user specified threshold or penalize them linearly (instead of quadratically as in the LS solution)
 - Minimize the norm of the weight vector
- More robust!

$$\min_{w,b,\xi\geq 0} ||w||^2 + C \sum_{i=1}^{N} \xi_i$$

Such that for all *i*:

$$|(w^Tx_i+b)-y_i| \le \epsilon+\xi_i$$

SVR: Primal Form

$$min_{w,b,\xi\geq 0} ||w||^2 + C \sum_{i=1}^{N} (\xi_i^+ + \xi_i^-)$$

Such that for all *i*:

$$y_{i} - (\mathbf{w}^{T} \mathbf{x}_{i} + b) \leq \epsilon + \xi_{i}^{+}$$
$$(\mathbf{w}^{T} \mathbf{x}_{i} + b) - y_{i} \leq \epsilon + \xi_{i}^{-}$$
$$\xi_{i}^{+}, \xi_{i}^{-} \geq 0$$

So what is min $||w||^2$ doing here

Geometric interpretation of margin maximization in regression

SVR: Dual Form

$$max_{\alpha} - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} (\alpha_{i}^{+} - \alpha_{i}^{-}) (\alpha_{j}^{+} - \alpha_{j}^{-}) x_{i}^{T} x_{j} - \epsilon \sum_{i=1}^{N} (\alpha_{i}^{+} + \alpha_{i}^{-}) - \sum_{i=1}^{N} y_{i} (\alpha_{i}^{+} - \alpha_{i}^{-})$$

Subject to:

$$0 \le \alpha_i^+ \le C, 0 \le \alpha_i^- \le C$$

$$\sum_{i=1}^{N} (\alpha_i^+ - \alpha_i^-) = 0$$

 We can now apply the kernel trick and use it for non-linear regression

Kernels in SVR

 In the kernel space the SVR is fitting a line which corresponds to an arbitrary curve in the original feature space

SVR in action

Figure 13.7 The fitted regression line to data points shown as crosses and the ϵ -tube are shown ($C=10, \epsilon=0.25$). There are three cases: In (a), the instance is in the tube; in (b), the instance is on the boundary of the tube (circled instances); in (c), it is outside the tube with a positive slack, that is, $\xi_+^t > 0$ (squared instances). (b) and (c) are support vectors. In terms of the dual variable, in (a), $\alpha_+^t = 0$, $\alpha_-^t = 0$, in (b), $\alpha_+^t < C$, and in (c), $\alpha_+^t = C$.

SVR with quadratic kernel

Figure 13.8 The fitted regression line and the ϵ -tube using a quadratic kernel are shown ($C = 10, \epsilon = 0.25$). Circled instances are the support vectors on the margins, squared instances are support vectors which are outliers.

SVR with RBF kernel

Figure 13.9 The fitted regression line and the ϵ -tube using a Gaussian kernel with two different spreads are shown ($C = 10, \epsilon = 0.25$). Circled instances are the support vectors on the margins, and squared instances are support vectors that are outliers.

Regression with linear models

http://scikit-learn.org/stable/modules/linear_model.html

Model	Description
Ordinary	$min Xw - y _2^2$
Least Squares	w
Ridge	$min Xw - y _2^2 + \alpha w _2^2$
Regression	w · · · · · · · · · · · · · · · · · · ·
Lasso	
	$w 2n_{samples}$
Multitask	$min = \frac{1}{ VW - V ^2} + \alpha W _{ct}$
Lasso	$\frac{min}{w}\frac{1}{2n_{samples}} = \frac{1}{ F_{ro} + \alpha } + \frac{1}{ F_{ro} + \alpha }$
	$ A _{Fro} = \sqrt{\sum_{ij} a_{ij}^2}$
Elastic Net	$\min_{w} \frac{1}{2n_{samples}} Xw - y _{2}^{2} + \alpha \rho w _{1} + \frac{\alpha(1 - \rho)}{2} w _{2}^{2}$
Multi-task Elastic Net	$\min_{W} \frac{1}{2n_{samples}} XW - Y _{Fro}^{2} + \alpha \rho W _{21} + \frac{\alpha(1-\rho)}{2} W _{Fro}^{2}$
LARS and	Can get the fullI regularization path
LARS Lasso	
Orthogonal	$\arg\min y - X\gamma _2^2$ subject to $ \gamma _0 \le n_{nonzero_coefs}$ OR
Matching	$\arg\min \gamma _0 \text{ subject to } y - X\gamma _2^2 \le \text{tol}$
Pursuit	$arg mm f _0 subject to g - Aff _2 \le tor$
Logistic	$1 T \qquad \sum_{i=1}^{n} a_i A_i = T$
Regression	$\min_{w,c} \frac{1}{2} w^T w + C \sum_{i=1} \log(\exp(-y_i(X_i^T w + c)) + 1).$
(For	w,c Z $=$ $i=1$
classification)	

Perceptron	
Passive	Regularized Perceptron
Aggressive	
Algorithm	
RANSAC	For Robust regression Corrupt y OLS (16 time 0.045) The short (16 ti
Thiel Sen	For robust regression
Huber Regressor	$\min_{w,\sigma} \sum_{i=1}^{n} \left(\sigma + H_m \left(\frac{X_i w - y_i}{\sigma} \right) \sigma \right) + \alpha w _2^2$ $H_m(z) = \begin{cases} z^2, & \text{if } z < \epsilon, \\ 2\epsilon z - \epsilon^2, & \text{otherwise} \end{cases}$

Least Square SVM

$$\min_{w,\beta_0,e} \frac{1}{2} w^T w + \gamma \frac{1}{2} \sum_{i=1}^N e_i^2 \text{ such that } y_i = y_{\mathbf{w}}(x_i) + e_i, i = 1, \dots, N$$

$$L_{\alpha}(w,\beta_0,e) = \frac{1}{2} w^T w + \gamma \frac{1}{2} \sum_{i=1}^N e_i^2 - \sum_{i=1}^N \alpha_i \{ w^T \phi(x_i) + \beta_0 + e_i - y_i \}$$

$$w = \sum_{i=1}^N \alpha_i \phi(x_i) \sum_{i=1}^N \alpha_i = 0, \ \alpha_i = \gamma e_i, i = 1, \dots, N$$

$$w^T \phi(x_i) + \beta_0 + e_i - y_i = 0, i = 1, \dots, N$$

$$\begin{bmatrix} 0 & 1_N^T \\ 1_N & Z^T Z + I/y \end{bmatrix} \begin{bmatrix} \beta_0 \\ \alpha \end{bmatrix} = \begin{bmatrix} 0 \\ y \end{bmatrix} \text{ where } Z^T = \begin{bmatrix} \phi(x_1)^T y_1 \\ \phi(x_2)^T y_2 \\ \cdots \\ \phi(x_N)^T y_N \end{bmatrix}$$

LS SVM

- Direct Solution of the form Ax=b
- Can be used for regression or for classification

Multi-output regression

- When we need to predict more than one variable as the output
 - The output variables may not be independent of each other

$$h: \Omega_{X_1} \times \ldots \times \Omega_{X_m} \longrightarrow \Omega_{Y_1} \times \ldots \times \Omega_{Y_d}$$

 $\mathbf{x} = (x_1, \ldots, x_m) \longmapsto \mathbf{y} = (y_1, \ldots, y_d),$

- Solutions?
 - Apply a regression method for each variable
 - Shortcoming?
 - » Correlations are ignored
- Borchani, Hanen, Gherardo Varando, Concha Bielza, and Pedro Larrañaga. 2015. "A Survey on Multi-Output Regression." Wiley Int. Rev. Data Min. and Knowl. Disc. 5 (5): 216–33. doi:10.1002/widm.1157.

Required

- Reading:
 - Section 13.10 in Alpaydin 2010
- Problems
 - Discuss least squares regression and SVR in terms of structural risk minimization (SRM)
 - Understand how we achieved the dual form
 - Understand how we got from $|(w^Tx_i + b) y_i| \le \epsilon + \xi_i$ to the following two constraints

$$y_{i} - (w^{T}x_{i} + b) \le \epsilon + \xi_{i}^{+}$$
$$(w^{T}x_{i} + b) - y_{i} \le \epsilon + \xi_{i}^{-}$$

We want to make a machine that will be proud of us.

- Danny Hillis