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Regression

* Estimate the relationship among variables
— Dependent variables

— Independent variables

* Used in prediction and forecasting
 Mathematical formulation
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— Model:Y = f(X;w) + €

— Linear
.
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Linear Regression

Wi
1 2 d
* f(xi)=b+wlxi()+wzxi()+...+dei() | w
' =|:
*  This implies ((@+1)x1) ;
— f(x) =[x 1w
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Linear Regression

* |t can also be written as:

— Xw' = y //‘
* If X issquare (N=d+1) then the g
solution to the above equation is V
-w' =X"1y
 Example
_x=[U 1]y=[33 B
2 11’7 T la.75 e
., [1.25] |
— Thus: w' = 5 95
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Linear Regression: Least Squares solution

 However, having a square X is very restrictive
* |f Xis not square, we can use a pseudo-inverse

Xw' =y
XTxw' = XTy
w' = (XTX) XTy
w = X"y
« Xt = (XTX)_1XT is the pseudo-inverse

* Used to solve over-determined systems
— More constraints than parameters
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Linear Regression: Least Squares solution

 Compute the pseudo-inverse and plot
* Note that the line isn’t passing through all

10 7 . . . T
e @ data L
of| - e ine ~ .
i 7
sl — recovered line ,,fff! | 1 3.5
e
7 ;”f.! 2 4.75
| _ e 3 7.05
___.-; -
- 4 95
i
4t {-’f{
>
3 1 1 1 1 1
10 15 20 25 3.0 35 410

X

CIS 621: Machine Learning PIEAS Biomedical Informatics Research Lab



Properties of the least-squares solution

* The previous line represents a least squares (LS) solution to the regression
problem

* It minimizes the mean square error of the prediction

 The mean square error resulting from a specific weight vector can be written as
(ignoring bias):

1 1 2
- E(w) = ﬁzliv—l(f(xi) —-y:)f = ﬁZ?’q(’QTW - ¥i)
— Thus the LS learning problem can written as:

min, E(W) = 2> (xfw )"

— In Matrix form, E(w) = %(Xw - I Xw —y)

— If we differentiate E(w) with respect to w and substituting it to zero we get:
Xw=y

* We can now solve for w to get a closed form least square solution
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Least squares visualized

* The thick red lines indicate the error
corresponding to each data point

* Least square solution minimizes the sum of
the square lengths of all red lines
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Problems with least squares solution

* Due to squaring of the error of each data
point the least square solution is very
sensitive to outliers

* |t gives only a linear solution
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Support Vector Regression

 Hard Form
— All errors must be within a user specified threshold
— Minimize the norm of the weight vector

min,, , [|w]|*
Such that foralli =1..N: /

|(Wix;+b)—y; | <€

Penalty/loss function
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Support Vector Regression

e Soft Form

— Errors must be within a user specified threshold or penalize them
linearly (instead of quadratically as in the LS solution)

— Minimize the norm of the weight vector
* More robust!

N
mity , eollWIZ +C ) &
i=1

Such that for all i :
|(wa,-+b)—yi | SE+€i
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SVR: Primal Form

N
min,p e-olWII% + € ) (6 + &)
i=1

Such that forall i :
yi —(Wlx;+b) <e+¢&
(Wix; +b) —y; < e+ &
§.8 =0
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So what is min ||w/||? doing here

 Geometric interpretation of margin
maximization in regression
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SVR: Dual Form

N

maxa——ii (af — q; )(a )x z(cx +a;)— Z)’z(“ a;)
i=1j=1

i=1

Subject to:
0<a/<C,0<a <C
im(af —a;i) =0

 We can now apply the kernel trick and use it
for non-linear regression
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Kernels in SVR

* |n the kernel space the SVR is fitting a line
which corresponds to an arbitrary curve in the
original feature space

X o(x)
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SVR Iin action
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Figure 13.7 The fitted regression line to data points shown as crosses and the e-
tube are shown (C = 10, € = 0.25). There are three cases: In (a), the instance is in
the tube; in (b), the instance is on the boundary of the tube (circled instances); in
(c), it is outside the tube with a positive slack, that is, €, > 0 (squared instances).
(b) and (c) are support vectors. In terms of the dual variable, in (a), &', =0, a” =
0,in(b), &, < C, and in (¢), &', = C.
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SVR with quadratic kernel
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Figure 13.8 The fitted regression line and the e-tube using a quadratic kernel
are shown (C = 10,e = 0.25). Circled instances are the support vectors on the
margins, squared instances are support vectors which are outliers.
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SVR with RBF kernel

Figure 13.9 The fitted regression line and the e-tube using a Gaussian kernel
with two different spreads are shown (C = 10,e = 0.25). Circled instances are
the support vectors on the margins, and squared instances are support vectors
that are outliers.
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Regression with linear models

* http://scikit-learn.org/stable/modules/linear model.html
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Model Description ‘
Ordinary min || Xw —y 2
Least Squares w
Ridge min || Xw — yl||2° + a||w||2”
Regression w
1

Lasso min - Xw —y||3 + a||w||;

w 2n.s.:l-.rnj:u'f:s
Multitask , 1 — 2 v

min XW -Y + a| |W
Lasso W 2113[””}]1'53 | |Frﬂ ‘ | ‘ |21
| A|[Fro = “?j
Elastic N 1 1 —
SN min ———— || Xw — g2 + aplfwlly + S |

w Ngq mples 2
Multi-task | 1 I 112 . all—p) o
Elastic Net m I_.”' : I XW —% ||Fr0 + ﬂ'ﬂ' I” H?l + p Hn ”Fru

" zn-sam-p!es 2
LARS and Can get the fulll regularization path
LARS Lasso '
Orthogonal | arg min ||y — X‘j;-||§ subject to ||v|lo < Mnonzerocoefs or
Matching argmin ||y|[p subject to ||y — X7~ 2 < tol
Pursuit 5 -'”US ject 1o ”y - f”? =~ 10
Logistic 1 T . T . .
Regression min EH‘ w +C Z lug(exp(—yi(x,; w+c))+1).
(For e i=1
classification)
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Perceptron
Passive Regularized Perceptron
Aggressive
Algorithm
RANSAC For Robust regression Cornupt
. ﬁ:ﬂ,,.;;s-_—’-"“*" ==
Thiel Sen For robust regression ]
Huber . X - — y: .
. E : <34 i 2 )
Regressor min o+ Hm o] + CI:'H'I"J'_'HQ
w.o 4 o
1=1
(2) 2%, if |2] < .
mi\~) — . y
2€|z| — 62, otherwise | N
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Least Square SVM

N
]. T ]. 2 .
M — _ : h that i = Yw (T i __1’...3N
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LS SVM

* Direct Solution of the form Ax=b
e Can be used for regression or for classification
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Multi-output regression

* When we need to predict more than one variable as the

output

— The output variables may not be independent of each other

h : 'QXl X ... X -QX?H_ — -QYl X X 'de

X=(T1,....Cm) —Y = (Y1,..-,Yd).

— Solutions?

* Apply a regression method for each variable

— Shortcoming?
» Correlations are ignored

 Borchani, Hanen, Gherardo Varando, Concha Bielza, and
Pedro Larranaga. 2015. “A Survey on Multi-Output
Regression.” Wiley Int. Rev. Data Min. and Knowl. Disc. 5
(5): 216-33. d0i:10.1002/widm.1157.
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Required

* Reading:
— Section 13.10 in Alpaydin 2010

* Problems

— Discuss least squares regression and SVR in terms
of structural risk minimization (SRM)

— Understand how we achieved the dual form

— Understand how we got from |w'x;+b) —y; |<e+¢
to the following two constraints

yi —(wlx;+b) <e+¢&
(Wix;+b) —y; < e+&
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We want to make a machine that will be
proud of us.

- Danny Hillis
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