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Lecture Flow
• Multi-class Classification
• Multi-label Classification
• Beyond Simple Classification: Generalize to Structured Output Learning 

(take ideas from: Structured Learning and Prediction in Computer Vision 
By Sebastian Nowozin and Christoph H. Lampert)

• Structured SVM
– Margin Rescaling
– Slack Rescaling
– One-Slack SVM

• Inference issues
• Implementation

– Sequence Labeling
– Time series classification
– Maximization of average precision
– Maximum Margin Planning
– SVM Struct
– PyStruct
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Supervised Classification
• Supervised 

Classification
– Apple or orange

– Inductive: Infer a rule 
for classification and 
use it to label unknown 
examples
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Apple Apple Orange Orange

▪ Multi-class Classification
▪ Apple or orange or mango

▪ For a binary classifier we can 
use

▪ One vs. All
▪ Apple vs. (Orange,Mango)

▪ Orange vs. (Apple, Mango)

▪ Mango vs, (Apple, Orange)

▪ One against One
▪ Apple vs. Orange

▪ Apple vs. Mango

▪ Orange vs. Mango

Apple Apple Orange Orange

Mango Mango
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Multiclass Classification

• Let’s take an joint feature learning approach, i.e., 
𝑔 𝑥, 𝑦 = 𝒘,𝝍 𝑥, 𝑦
– The discriminant function score is generated based on 

a joint feature representation of the input example 
and “a” label

– This function tells us how feasible it is for 𝑥 to have a 
label 𝑦
• It can be viewed as a compatibility function!

– How compatible is a label to an input.

– How can we choose the best label?
• Simple, y 𝑥 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑦∈𝕐𝑔 𝑥, 𝑦

• Here, 𝕐 is the space of possible labels
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Multi-class learning problem

• We want to learn the function 𝑔 𝑥, 𝑦 such 
that the optimal labeling based on this 
function matches the training data labels

• Loss Function

– 𝐿 𝑋, 𝑌 =
1

𝑁
σ𝑖=1
𝑁 1 𝑦 𝑥𝑖 ≠ 𝑦𝑖

– We know that, 𝑦 𝑥𝑖 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑦∈𝕐𝑔 𝑥𝑖 , 𝑦 or 

the discriminant function is Maximum a priori 
prediction (MAP): 𝑓 𝑥 = 𝑚𝑎𝑥𝑦∈𝕐𝑔 𝑥, 𝑦
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Binary Classification as a special case of multi-
class classification

• For binary classification

• 𝕐 = −1,1

• 𝝋 𝑥, 𝑦 = 𝑦𝝓 𝑥

• 𝑦 𝑥 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑦∈𝕐𝑔 𝑥, 𝑦 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑦∈𝕐 𝒘,𝝋 𝑥, 𝑦 =

𝑎𝑟𝑔𝑚𝑎𝑥𝑦∈𝕐 𝒘, 𝑦𝝓 𝑥 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑦∈𝕐𝑦 𝒘,𝝓 𝑥 =

𝑎𝑟𝑔𝑚𝑎𝑥𝑦∈𝕐𝑦𝑓 𝑥

• Classify as +1 if: 𝑔 𝑥 > −𝑔 𝑥 or 𝑔 𝑥 > 0

• Classify as -1 if: −𝑔 𝑥 > 𝑔 𝑥 or 𝑔 𝑥 < 0

• Exactly binary classification constraints!

– Thus, the classification rule 𝑦 𝑥 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑦∈𝕐𝑔 𝑥, 𝑦 works for the 

binary classification case with the joint feature definition 𝝋 𝑥, 𝑦 =
𝑦𝝓 𝑥
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Binary Classification as a special case of 
multi-class classification

• Does the classification rule work 𝑥 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑦∈𝕐𝑔 𝑥, 𝑦 for binary 

classification 𝕐 = −1,1 with the following joint feature definition?

• 𝝋 𝑥, 𝑦 =
1 𝑦 = +1 𝝓 𝑥

1 𝑦 = −1 𝝓 𝑥

• 𝑦 𝑥 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑦∈𝕐𝑔 𝑥, 𝑦 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑦∈𝕐 𝑤,𝝋 𝑥, 𝑦 =

𝑎𝑟𝑔𝑚𝑎𝑥𝑦∈𝕐 𝒘1, 1 𝑦 = +1 𝝓 𝑥 + 𝒘−1, 1 𝑦 = −1 𝝓 𝑥 =

𝑎𝑟𝑔𝑚𝑎𝑥𝑦∈𝕐1 𝑦 = +1 𝒘1, 𝝓 𝑥 + 1 𝑦 = −1 𝒘−1, 𝝓 𝑥

• Classify as +1 if: 𝒘1, 𝝓 𝑥 > 𝒘−1, 𝝓 𝑥

• or 𝒘′ = 𝒘𝟏 −𝒘−𝟏, 𝝓 𝑥 > 0

• Zero otherwise

• Exactly binary SVM!

• Only one of the two sub-components of the weight vector is 
active!
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Joint Feature Representation for Multi-Class 
Learning

• Does the classification rule work 𝑥 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑦∈𝕐𝑔 𝑥, 𝑦 for multi-class 
classification 𝕐 = 1,2, … , 𝑘 with the following joint feature definition?

• 𝝋 𝑥, 𝑦 =

1 𝑦 = 1 𝝓 𝑥

1 𝑦 = 2 𝝓 𝑥
⋮

1 𝑦 = 𝑘 𝝓 𝑥

• With this feature representation, an example is assigned to class 𝑦 if : 
𝑔 𝑥, 𝑦 > 𝑔 𝑥, 𝑦′ , with 𝑦′ ∈ 𝕐 − 𝑦

• The true class label should always score higher than all other classes

• Thus our learning problem becomes

min
1

2
𝒘𝑻𝒘+ 𝐶σ𝑖=1

𝑁 𝜉𝑖

𝑠. 𝑡. 𝒘,𝝋 𝑥𝑖 , 𝑦𝑖 −𝑚𝑎𝑥𝑦∈𝕐− 𝑦𝑖 𝒘,𝝋 𝑥𝑖 , 𝑦 ≥ 1 − 𝜉𝑖 ,

𝜉𝑖 ≥ 0

8



CIS 621: Machine Learning PIEAS Biomedical Informatics Research Lab

Reduction to binary classification

We can rewrite our learning problem as:

min
1

2
𝒘𝑻𝒘+ 𝐶෍

𝑖=1

𝑁

𝜉𝑖

𝑠. 𝑡. 𝜉𝑖 ≥ 𝑚𝑎𝑥𝑦∈𝕐− 𝑦𝑖 1 − 𝒘,𝝋 𝑥𝑖 , 𝑦𝑖 + 𝒘,𝝋 𝑥𝑖 , 𝑦

𝜉𝑖 ≥ 0
Under the joint feature representation discussed earlier, this 
reduces to :

min
1

2
𝒘𝑻𝒘+ 𝐶෍

𝑖=1

𝑁

𝜉𝑖

𝑠. 𝑡. 𝑦𝑖 𝒘′,𝝓 𝑥𝑖 ≥ 1 − 𝜉𝑖 ,

𝜉𝑖 ≥ 0
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Generalization
• Building the joint feature representation allows us to extend our 

SVM concepts to structured outputs
– Our outputs are no longer restricted to single numbers!

• Using the training rule
– The compatibility of an example with its true label should be the 

highest in comparison to any other labels

• Using the classification rule
– The output prediction for an input is the one with which the input 

gives the highest compatibility

• The output values can be structured objects
– Scalars
– Vectors
– Trees
– Sequences

• Examples
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A more  generalized look

• With a joint feature representation, we can 
define a structured output SVM as follows

• ∆: measures the error between outputs (lower 
bounded by zero when 𝑦 = 𝑦𝑖)

• Example: Zero-One Loss 

• This is the margin-rescaling formulation, another one rescales the slacks
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We had a +1 here in our case but this is more general! Also notice 

that 𝑦 ∈ 𝕐 − 𝑦𝑖 has been replaced with 𝑦 ∈ 𝕐 but it doesn’t 

affect the outcome!
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Reduction to Binary Classification

• When label is different from true label

∆ 𝑦𝑖 , −𝑦𝑖 + 𝑤,𝝋 𝑥𝑖 , −𝑦𝑖 − 𝑤,𝝋 𝑥𝑖 , 𝑦𝑖 = 1 − 2𝑦𝑖 𝑤,𝝓 𝑥𝑖

• When label is same as the true label

∆ 𝑦𝑖 , 𝑦𝑖 + 𝑤,𝝋 𝑥𝑖 , 𝑦𝑖 − 𝑤,𝝋 𝑥𝑖 , 𝑦𝑖 = 0

• The loss function is thus: max{0,1 − 2𝑦𝑖 𝑤,𝝓 𝑥𝑖 } which is (almost) the 

hinge loss function! 
– Thus, Structured output SVM reduces to the binary classification case!
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Multiple Label Classification

• A single example has more than one labels associated 
with it
– For example: A document can have the following labels 

• News

• Politics

• Sports

– Naïve solution
• Make an individual classifier for each class!

– Note there is a correlation between the output labels so learning them 
individually will result in sub-optimal performance

• Make a multi-class classifier for all possible combinations of 
output labels
– Won’t work because we will be restricted to only the combinations of 

labels available during training

– The possible number of combindation can be very large
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Structured Output Learning Application

• Sequence Labeling

– Input: A sequence

– Output: A sequence (of real values) or alphabet

• Example

– Binding site prediction

– Machine Translation

– Speech Synthesis

– Part of speech tagging
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Structured Output Learning Application

• Image Segmentation and object detection
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Remote Sensing
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Security

• Sequence labeling as structured 
output learning

– Given a sequence, predict the 
labels

– Example: 
• Finding what keys were pressed 

using audio recording of keyboard 
emnations

– Uses a hidden markov model

– Can use a structured SVM 
here

17



CIS 621: Machine Learning PIEAS Biomedical Informatics Research Lab

Learning to Plan
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Applying Structure Output Learning

• Requires

– Representation

• A joint feature representation (or a joint kernel 
representation) 𝝋 𝑥, 𝑦

– Error Evaluation

• Defining an error function ∆ 𝑦, 𝑦′

– Optimization

• Efficient inference: 𝑔 𝑥 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑦∈𝕐𝑔 𝑥, 𝑦

• Actual optimization
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Binary Classification

• Representation

– 𝝋 𝑥, 𝑦 = 𝑦𝝓 𝑥

• Error

– ∆ 𝑦, 𝑦′ = 0/1 loss

• Optimization

– Inference: Exact!

• Try all possible combinations of outputs
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Multi-class Classification

• 𝝋 𝑥, 𝑦 =

1 𝑦 = 1 𝝓 𝑥

1 𝑦 = 2 𝝓 𝑥
⋮

1 𝑦 = 𝑘 𝝓 𝑥

• Error: 0/1 loss 
– Now we can weight errors between predictions differently

• Fatty being misclassified as heterogenous is less erroneous than 
Fatty being misclassified as normal

• Optimization
– Inference: Exact

• Try all possible combinations!

– Can we predict classes we haven’t seen in our training?
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Hierarchical Classification

• The output labels have a hierarchy
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Multi-label Classification

• 𝝋 𝑥, 𝑦 =

1 𝑦 = 1 𝝓 𝑥

1 𝑦 = 2 𝝓 𝑥
⋮

1 𝑦 = 𝑘 𝝓 𝑥

• Error: 0/1 loss

• Optimization

– Inference: Exact?

• Approximate, search for a set of possible labels that 
give the highest compatibility
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Image Segmentation

• Inference: Hard! We want to find a square which optimizes the compatibility score. 
– Branch and bound methods!
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Solution to the SSVM
• Solving

– Stochastic Gradient Descent
– Cutting Plane Methods

• One-Slack SSVM works the fastest!

• The most complicated part is the inference

– 𝑔 𝑥 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑦∈𝕐𝑔 𝑥, 𝑦

– Might need approximations or efficient algorithms
• Dynamic Programming or Branch and bound for exact solutions

• SVM-Struct
– Specific performance measure optimization (ROC-AUC, Precision, etc.)

• PyStruct
• SHOGUN
• Alternatives:

– Slack-Rescaling SVM (usually performs better than margin rescaling)
– Conditional Random Fields
– Neural Networks (with appropriate losses)
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https://www.cs.cornell.edu/people/tj/svm_light/svm_struct.html
https://pystruct.github.io/user_guide.html
http://www.shogun-toolbox.org/notebook/latest/FGM.html

https://www.cs.cornell.edu/people/tj/svm_light/svm_struct.html
https://pystruct.github.io/user_guide.html
http://www.shogun-toolbox.org/notebook/latest/FGM.html
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Required Reading

• “Chapter 6: Structured Support Vector Machines” in “Structured 
Learning and Prediction in Computer Vision By Sebastian” Nowozin and 
Christoph H. Lampert
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We want to make a machine that will be 
proud of us.

- Danny Hillis


