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Universal Function Approximation

* Universal Approximation

— Any function f(x) over m inputs can be represented as follows:
N

— T
F(.X') = z vigo(wi X + bl)
=1
* @(+) is a non-constant, bounded and monotonically-increasing
continuous “basis” function

* Nisthe number of functions
* F(x) is an approximation of f(x), i.e., |f(x) — F(x)| < €
* A neural network with a single hidden layer is a universal
approximator
* Asingle hidden layer neuron with randomly initialized
weights is a universal approximator
— Extreme Learning Machine
— Random Fourier Features as Kernel Approximators
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Universal Function Approximation

* A neural network with one hidden layer can
be used to approximate any shape

— However, the approximation might require
exponentially many neurons

— How can we reduce the number of computations?

Wang, Haohan, and Bhiksha Raj. “On the Origin of Deep Learning.” arXiv:1702.07800 [Cs, Stat], February 24, 2017.
http://arxiv.org/abs/1702.07800.
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Practical Issues in Universal Approximation

* The universal approximation theorem means that
regardless of what function we are trying to learn,

we know that a large MLP will be able to represent
this function.

 However, we are not guaranteed that the training
algorithm will be able to “learn” that function.

— Optimization can fail

— Learning is different from optimization

* The primary requirement for learning is generalization
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Width vs. Depth

An MLP with a single hidden layer is sufficient to represent any function
— But the layer may be infeasibly large
— May fail to learn and generalize correctly

Using a deeper model can reduce the number of units required to represent
the desired function and can reduce the amount of generalization error

A function that could be expressed with O(n) neurons on a network of depth k
required at least O(2V") and O((n -1)¥) neurons on a two-layer neural network:
Delalleau and Bengio (2011)

Functions representable with a deep rectifier net can require an exponential
number of hidden units with a shallow (one hidden layer) network: Montufar
(2014)

For a shallow network, the representation power can only grow polynomially
with respect to the number of neurons, but for deep architecture, the
representation can grow exponentially with respect to the number of neurons:
Bianchini and Scarselli (2014)

Depth of a neural network is exponentially more valuable than the width of a
neural network, for a standard MLP with any popular activation functions:
Eldan and Shamir (2015)
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Width vs. Depth

* Exponential advantage of deeper networks

Montufar (2014)
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Width vs. Depth

 Empirical results for some data showed that
depth increases generalization performance in
a variety of applications

Test accuracy (percent)
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Figure 6.6: Empirical results showing that deeper networks generalize better when used
to transcribe multi-digit numbers from photographs of addresses. Data from

( ). The test set accuracy consistently increases with increasing depth. See
figure 6.7 for a control experiment demonstrating that other increases to the model size
do not vield the same effect.
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Figure 6.7: Deeper models tend to perform better. This is not merely because the model is
larger. This experiment from Goodfellow ef (201 1) shows that increasing the number
of parameters in layers of convolutional networks without increasing their depth is not
nearly as effective at increasing test set performance. The legend indicates the depth of
network nsed to make each curve and whether the curve represents variation in the size of
the convolutional or the fully connected layers. We observe that shallow models in this
context overfit at around 20 million parameters while deep ones can benefit from having
over 60 million. This sugeests that using a deep model expresses a useful preference over
the space of functions the model can learn. Specifically, it expresses a belief that the
function should consist of many simpler functions composed together. This could result
either in learning a representation that is composed in turn of simpler representations (e.g..
corners defined in terms of edges) or in learning a program with sequentially dependent
steps (e.g., first locate a set of objects, then segment them from each other, then recognize

them).
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Increasing representation power with depth
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Issues with Depth

* Generalization
— Large networks are large capacity machines

— Remember: Learning requires generalization and goes beyond mere
minimization of an objective function!

* Failure to Optimize
— Random initialization leads to the network being stuck in poor solutions

— Deeper networks are more prone to vanishing gradients and optimization
failures
* “Greedy Layer-Wise Training of Deep Networks” by Bengio et al., 2006
— Uses unsupervised pre-training to initialize the weights of a network such that the optimization becomes easier

* Since 2010, this has been replaced with Drop-out and batch-normalization schemes

which improve the optimization performance
— Rectified Linear Units get rid of the vanishing gradient problem
— Drop-out improves generalization
— Batch Normalization accelerates deep learning and improves generalization

» Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift by loffe
and Segedy, 2015.

* Large scale optimization is tricky in deep learning
— Computationally demanding

— Requires efficient methods
e Stochastic gradient and sub-gradient methods
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Issues with depth

Handling variety of neural network architectures

How can we develop a framework of learning in which we can add
layers, have a large diversity of layer connectivity, change objective
functions and losses, layer connectivity, regularization, etc.?

And still solve the optimization problem in an efficient manner!

Symbolic Computation and Automatic Differentiation

GPU

* Efficient matrix operations
e Higher bandwidth
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End of Lecture-1

We want to make a machine that will be
proud of us.

- Danny Hillis
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