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What’s wrong with Convolutional Neural Networks?

• Watch the talk by Geoff Hinton on the subject:
– https://www.youtube.com/watch?v=rTawFwUvnLE

• Also watch: The failures of deep learning
– https://www.youtube.com/watch?v=jWVZnkTfB3c

• Beyond DCNN
– Gabor Convolutional Networks

• https://arxiv.org/abs/1705.01450v2
– Convolutional Sequence to Sequence Learning

• https://arxiv.org/abs/1705.03122v2
– Do Deep Convolutional Nets Really Need to be Deep and 

Convolutional 
• https://arxiv.org/abs/1603.05691v4

– Picasso: A Neural Network Visualizer
• https://arxiv.org/abs/1705.05627v1
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Increasing Depth (10-100 Layers)

• What if we keep on stacking layers?

– 56-layer net has higher training error and test 
error than 20-layer net 
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Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Deep Residual Learning for 
Image Recognition”. CVPR 2016
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Simply Stacking Layers?

• “Overly deep” plain nets have higher training error

• A general phenomenon, observed in many datasets 

• Reasons

– Optimization failure
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Residual Learning

5

H(x) is any desired mapping 
Hope the 2 weight layers fit H(x)

Plain Network

H(x) is any desired mapping 
Hope the 2 weight layers fit F(x)

The network learns fluctuations F(x)=H(x)-x
Easier!

Residual Network

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. CVPR 2016.
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ResNet Models

• No Dropout

• With Batch 
Normalization

• Use Data 
Augmentation
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CIFAR-10 Experiments

• Deep ResNets can be trained without difficulties

• Deeper ResNets have lower training error, and also lower test error 
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ResNet Results

• 1st places in all five main tracks
• ImageNet Classification: “Ultra-deep” 152-
layer nets 
• ImageNet Detection: 16% better than 2nd
• ImageNet Localization: 27% better than 2nd
• COCO Detection: 11% better than 2nd
• COCO Segmentation: 12% better than 2nd 
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Residual Networks

• Required Reading 
• Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. 

“Deep Residual Learning for Image Recognition”. CVPR 
2016.

• Many third-party implementations 
– list in https://github.com/KaimingHe/deep-

residual-networks

– Torch ResNet: 
https://github.com/facebook/fb.resnet.torch
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Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. CVPR 2016.
Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Identity Mappings in Deep Residual Networks”. arXiv 2016.

https://github.com/KaimingHe/deep-residual-networks
https://github.com/facebook/fb.resnet.torch
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Beyond ResNets

• Residual Networks Behave Like Ensembles of 
Relatively Shallow Networks

– https://arxiv.org/abs/1605.06431v2

• Fractal Networks

– https://arxiv.org/abs/1605.07648

• Deep Stochastic Networks

– https://arxiv.org/abs/1603.09382
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https://arxiv.org/abs/1605.06431v2
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Moving towards Generative Models

• Uptil now our models have been 
discriminatory

– Discriminate between classes

• Generative Models

– Models that can be used to generate examples!
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Generative Models
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NIPS 2016 Tutorial: Generative Adversarial Networks, Ian Goodfellow , https://arxiv.org/abs/1701.00160

https://arxiv.org/abs/1701.00160
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Generative Adversarial Networks
• Also known as Turing Learning
• Unsupervised Learning for generating 

realistic examples
• Consists of two networks

– Discriminator Network (D)
• Given a data set
• If an example has been chosen from the 

dataset, then D tries to output a probability 
value of 1.0 

• If the example is fake, then produce 0.0

– Generator Network (G)
• Input: Random noise
• Output: An example resembling the 

examples in the dataset
• The differentiator tries to produce a value 

of 0.0 for examples generated from the 
network

• The objective of G is to produce images for 
which D produces high probabilities 

• Performs 
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NIPS 2016 Tutorial: Generative 
Adversarial Networks by Ian 
Goodfellow, 2016
https://arxiv.org/abs/1701.00160

Generative Adversarial Networks
https://arxiv.org/abs/1406.2661

https://arxiv.org/abs/1701.00160
https://arxiv.org/abs/1406.2661
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GANs Applications: Super-resolution Imaging
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GAN: Manipulation of images

• Interactive Image Generation, Modification 
and Warping

– https://youtu.be/9c4z6YsBGQ0
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https://youtu.be/9c4z6YsBGQ0
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Image to Image Translation
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Neural Style Transfer

• Using CycleGAN

– https://github.com/junyanz/CycleGAN
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https://github.com/junyanz/CycleGAN
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GAN Applications

• https://lyrebird.ai/demo

• Copy anyone’s voice!
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https://lyrebird.ai/demo
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GAN Zoo

• https://deephunt.in/the-gan-zoo-79597dc8c347
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https://deephunt.in/the-gan-zoo-79597dc8c347
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Applications

• 9 Cool Deep Learning Applications | Two 
Minute Papers

• https://youtu.be/Bui3DWs02h4?list=PLujxSBD
-JXgnqDD1n-V30pKtp6Q886x7e

• https://www.youtube.com/watch?v=aKSILzbA
qJs&index=65&list=PLujxSBD-JXgnqDD1n-
V30pKtp6Q886x7e

• You said that? 
https://arxiv.org/abs/1705.02966v1
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Predicting Temporal Data

• Predicting time series 
data
– Number of sunspots

– Hurricane intensity

• Mathematically,

• ℎ𝑡 = 𝑓 𝒙𝟏, 𝒙𝟐, … 𝒙𝒕; ℎ1, ℎ2, … ℎ𝑡−1
– 𝑓𝑡 should approximate true values 

𝑦𝑡 for all times in the future
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Using Recurrent Networks

• Given the input xt at time t and the 
previous outputs, predict the current 
output using a neural network A

• We can unroll the network and do 
“backpropagation through time”
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http://colah.github.io/posts/2015-08-Understanding-LSTMs/
“The Unreasonable Effectiveness of Recurrent Neural Networks.”  http://karpathy.github.io/2015/05/21/rnn-effectiveness/. 

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
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Applications

• Spellings

• Grammar

• Learning to write text 

• Poetry

• Write code

• Predicting time series
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Issues with RNNs
• Fill in the blanks:

– The car is on the ______.
– The clouds are in the _____.

• The gap between relevant information and the place where it is needed is 
small – easy for RNN to learn

– Bismillah and Adiba are doing their projects with Dr. Fayyaz Minhas. 
The are classmates. They sit together in the lab. The project reports 
are due tomorrow and must be submitted to the supervisor for review 
prior to final submission. Bismillah and Adiba will submit their reports 
to ________.

• Irrelevant information
• Gap between relevant information and the place where it is used is larger
• RNNs will have difficulty here.

• Long term dependencies are an issue
– Solution: Long-Short Term Memories (LSTM)
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LSTM (Hochreiter & Schmidhuber 1997)

• RNNs can be represented as
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The repeating module in a standard RNN contains a single layer.
ℎ𝑡 = 𝑡𝑎𝑛ℎ 𝑊, ℎ𝑡−1, 𝑥𝑡
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LSTM

28



CIS 622: Machine Learning in Bioinformatics PIEAS Biomedical Informatics Research Lab

LSTM: Cell State

• Each cell’s output is dependent on its cell state 
which is “gated”, i.e., information can be 
added or removed from the state 
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Forget gate layer

• It looks at ht-1 and xt and outputs a number 
between 0 and 1 which is multiplied with the cell 
state Ct-1 in an element-wise manner
– In a language model trying to predict the next word based on all 

the previous ones. In such a problem, the cell state might 
include the gender of the present subject, so that the correct 
pronouns can be used. When we see a new subject, we want to 
forget the gender of the old subject.
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Input Gate Layer

• The next step is to decide what new information we’re going to 
store in the cell state. This has two parts. 
– First, a sigmoid layer called the “input gate layer” decides which values 

will be updated.
– Next, a tanh layer creates a vector of new candidate values, ෩𝐶𝑡, that 

could be added to the state. In the next step, we’ll combine these two 
to create an update to the state.

• In the example of our language model, we’d want to add the gender 
of the new subject to the cell state, to replace the old one we’re 
forgetting.
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Cell State Update

• Forget elements of the previous cell state
• Create a tentative new cell state based on the current time 

cell, scale it by how much each element is to be updated 
and then add it to the gated previous cell state 

• In the case of the language model, this is where we’d 
actually drop the information about the old subject’s 
gender and add the new information, as we decided in the 
previous steps.
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Generate Predictions

• Output is filtered version of the cell state
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Applications

• Time Series Prediction with LSTM Recurrent Neural 
Networks in Python with Keras
– http://machinelearningmastery.com/time-series-

prediction-lstm-recurrent-neural-networks-python-keras/

• Using MLP
– http://machinelearningmastery.com/time-series-

prediction-with-deep-learning-in-python-with-keras/

• Time Series Forecasting with the Long Short-Term 
Memory Network in Python
– http://machinelearningmastery.com/time-series-

forecasting-long-short-term-memory-network-python/

34

http://machinelearningmastery.com/time-series-prediction-lstm-recurrent-neural-networks-python-keras/
http://machinelearningmastery.com/time-series-prediction-lstm-recurrent-neural-networks-python-keras/
http://machinelearningmastery.com/time-series-forecasting-long-short-term-memory-network-python/


CIS 622: Machine Learning in Bioinformatics PIEAS Biomedical Informatics Research Lab

Applications
• https://www.quora.com/What-are-the-various-applications-

where-LSTM-networks-have-been-successfully-used
• Language modeling (The tensorflow tutorial on PTB is a good place 

to start Recurrent Neural Networks) character and word level 
LSTM’s are used

• Machine Translation also known as sequence to sequence learning 
(https://arxiv.org/pdf/1409.3215.pdf)

• Image captioning (with and without 
attention, https://arxiv.org/pdf/1411.4555v...)

• Hand writing generation (http://arxiv.org/pdf/1308.0850v5...)
• Image generation using attention models - my favorite 

(https://arxiv.org/pdf/1502.04623...)
• Question answering (http://www.aclweb.org/anthology/...)
• Video to text (https://arxiv.org/pdf/1505.00487...)
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Transfer Learning

• http://sebastianruder.com/transfer-learning/

• Transfer Learning - Machine Learning's Next 
Frontier
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http://sebastianruder.com/transfer-learning/
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Issues

• Deep Neural Networks are Easily Fooled
– https://arxiv.org/abs/1412.1897v4

• Failures of deep learning
– https://arxiv.org/abs/1703.07950

• Requires rethinking generalization 

• Steps toward deep kernel methods from 
infinite neural networks
– https://arxiv.org/abs/1508.05133

• Do Deep Neural Networks Really Need to be 
Deep?

37

https://arxiv.org/abs/1412.1897v4
https://arxiv.org/abs/1703.07950
https://arxiv.org/abs/1508.05133


CIS 622: Machine Learning in Bioinformatics PIEAS Biomedical Informatics Research Lab

The Future

• AutoML
– DeepArchitect: Automatically Designing and Training Deep 

Architectures by Renato Negrinho, Geoff Gordon 
• https://github.com/negrinho/deep_architect

• Unsupervised Learning
– GANs and GAN inspired models
– Stopping GAN Violence with GUNs

• https://arxiv.org/abs/1703.02528v1

– Deep Stubborn Networks
• http://www.kdnuggets.com/2017/04/deep-stubborn-networks-gan-

refinement.html

– Generative Ladder Networks
• https://medium.com/towards-data-science/a-new-kind-of-deep-

neural-networks-749bcde19108

• Applications of Deep Learning
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End of Lecture-1

We want to make a machine that will be 
proud of us.

- Danny Hillis


