

Introduction

Dr. Fayyaz ul Amir Afsar Minhas

PIEAS Biomedical Informatics Research Lab

Department of Computer and Information Sciences

Pakistan Institute of Engineering & Applied Sciences

PO Nilore, Islamabad, Pakistan

http://faculty.pieas.edu.pk/fayyaz/

This course

Aims

- Concepts of Machine Learning
- Application of machine learning in Biomedical informatics
- Experiment design strategies for machine learning
- Development of required research techniques for a career in MLIB
- Research Output: Projects / Papers

Contents

- Week 1: Introduction: Machine Learning Framework, Python/Julia
 - A few useful things to know about machine learning
 - Machine learning in Bioinformatics: Challenges
 - Application areas
 - » CRISPR: Acr, Off-target effects, Guide Design
 - » Protein Interaction Prediction: Interface prediction, Binding Affinity Prediction
 - » Anti-microbial peptide prediction and design
 - » Hemometer, correlative machine learning applications
 - » Heterogenous Machine Learning: Different features for different examples
 - » Data Minimal AI
 - » A review of features used in proteins
 - A review of how we should do machine learning in bioinformatics

Weeks 2-3: Fundamentals of Machine Learning: Classification

- Discriminant Based Classification, Perceptron, SVM
- Kernel Methods in Biomedical Informatics
- Assignment-2: (A) Implement perceptron, (B) SVM, (C) Kernels for Different Problems
- Week 4: Experiment Design in ML for Bioinformatics
- Week 5: Fundamentals of Machine Learning: Theoretical Foundations (SRM)
- Week 8-12: Advanced Learning Machines
 - Regression [8], Ranking[9], Multiple Instance Learning [10]
 - Introduction to: Online Learning, Transductive Learning, Transfer Learning, Multi-task Learning, Multi-label Learning, Recommender Systems, Self-Taught Learning, High Dimensional Feature Mappings [10]
 - Structured Output Learning [11]
 - Correlation Filters [12]
- Week 13: Weak Supervision Techniques
 - Learning using privileged information
- Week 14: Probabilistic Soft Logic
- Week 15-16: Deep Learning in Biomedical Informatics
 - Introduction to existing methods
 - · Deep learning techniques for protein modeling

Books/Refs

- Kernel Methods for Pattern Analysis
- Understanding Machine Learning: From Theory to Algorithms by Shai Shalev-Shwartz and Shai Ben-David (excellent intro to structured prediction)
- Learning with Kernels
- SEQUENCE-BASED PREDICTION OF RESIDUE-LEVEL PROPERTIES IN PROTEINS in MACHINE LEARNING IN BIOINFORMATICS
- Neural Networks: Tricks of the Trade http://ciml.info/
- Deep Learning

Evaluation

- Assignments: 35%
 - Critique Writing: Review a paper, write a summary of it and identify flaws and potential improvements in it [5 in total 20 Marks]
 - Programming based (tentatively 3 Assignments) [15 Marks]
 - Should not take more than 4 hours of effort in each
- Project (individual: 35%): You can take your FYP if it is related and your supervisor agrees
- Mid Term/Quiz:5% (to prep you for the final!)
- **Final Exam:** 50%
 - Written Exam: 30%
 - Computer Exam: 20% (project work evaluated)
- Presentation in Group Meeting / 3rd Class
- No Extensions in deadlines
- Bonus Marks: Class Questions, Use of JULIA
 - http://julia.readthedocs.org/en/release-0.4/
- Effort Required: Avg. 2 hours per 1 class hour

Assignments

- Assignment-1
 - Making a kNN classifier (Experiments in dimensionality)
 - Implementation of a simple linear classifier
 - Theoretical Questions
- Assignment-2
 - Implement Kernel Methods
- Assignment-3
 - Clustering / Regression
- Assignment-4 (Begins from Day-1)
 - Write a review/critique of literature for your project
 - To be submitted with your sessional result
 - Evaluation by Presentation

Tentative Critique Papers

- [ALL] Do we need hundreds of classifiers to solve real world classification problems?
 - Are Random Forests Truly the Best Classifiers?
- [ALL] Design and Analysis of Classifier Learning Experiments in Bioinformatics: Survey and Case Studies
 - A systematic Comparison of Supervised Classifiers
- [ALL] Protein-protein binding affinity prediction from amino acid sequence
 - Comment on 'protein-protein binding affinity prediction from amino acid sequence'
 - Response to the comment on 'protein-protein binding affinity prediction from amino acid sequence'
 - PRODIGY: a web server for predicting the binding affinity of protein—protein complexes
 - Computational Approaches for Predicting Binding Partners, Interface Residues, and Binding Affinity of Protein-Protein Complexes
- [ALL] Deep Learning (http://www.nature.com/nature/journal/v521/n7553/full/nature14539.html)
 - Deep Learning in Bioinformatics (https://arxiv.org/pdf/1603.06430)
 - Deep learning for computational biology
 - The path from big data to precision medicine
 - Use of big data in drug development for precision medicine
 - Predicting the errorImproving protein disorder prediction by deep bidirectional long short-term memory recurrent neural networks
 - EP-DNN: A Deep Neural Network-Based s of predicted local backbone angles and non-local solventaccessibilities of proteins by deep neural networks
 - Global Enhancer Prediction Algorithm
- 1 Written Page For Each Critique With References
- 10+5 Minute Presentation
 - Submission 1 day before the evaluation

Logistics

- Course Webpage
 - Piazza
 - Please register, signup or send me an email so
 - afsar at pieas dot edu dot pk
 - Please use a single email address for all interaction and be sure to check it daily for updates
- Office Hours
 - (Free Tuition Time!) Tuesdays 1030-1130 in B-216
- Attendance: PIEAS Policy

Resources

Books

– \\172.30.10.2\FacultyShare\Fayyaz ul Amir AfsarDr\ClS621 Machine Learning

Python Help

- Faculty Share
- \\172.30.10.2\FacultyShare\Fayyaz ul Amir Afsar Dr
- \\172.30.10.2\FacultyShare\Fayyaz ul Amir Afsar Dr\PYTHON

Online Help

- Scikit: http://scikit-learn.org/stable/tutorial/basic/tutorial.html
- Scipy: http://www.scipy-lectures.org/
- Julia: http://julia.readthedocs.org/en/release-0.4/

Self-Learning Requirements

Python

- Install Anaconda Python Distribution in Windows or Spyder in Ubuntu Linux
- What you need to understand:
 - Installation and Administration
 - Using package manager (pip, easy_install, conda)
 - Basic Constructs: Variables, Control Flow, Object Oriented concepts, Mutable and Immutable Types, Lists and Dictionaries
 - Using Scipy (Matplotlib for plotting and Numpy)
 - Debugging (pdb)
 - Primary package: scikit-learn
- Reading pointers will be given
 - Can discuss issues in the office hours

To Do

Reading

Required

- Domingos, Pedro. "A Few Useful Things to Know About Machine Learning." *Commun. ACM* 55, no. 10 (October 2012): 78–87. doi:10.1145/2347736.2347755.
- "Machine Learning." Wikipedia, the Free Encyclopedia, January 20, 2016.
 https://en.wikipedia.org/w/index.php?title=Machine learning&oldid=700785899.

Optional

 Halevy, Alon, Peter Norvig, and Fernando Pereira. "The Unreasonable Effectiveness of Data." IEEE Intelligent Systems, 2009.

Critiquing

- Identify the main question
 - Why is this question being asked
 - What is the motivation
- What is the most critical aspect of the design of the experiment
 - Identify the comparison
 - Identify the control conditions
 - Potential Shortcomings in experiment design
- Classic problems in analysis/inferences/conclusions
 - Identify the primary conclusion
 - Does the data really point to that conclusion?

Critiquing Specific to Machine Learning

- Practicality
- Data Collection
- Performance Evaluation
- Application of the machine learning model
- Comparisons

Grading of critiques

- Summary [4]
 - Effectively summarize the paper in a maximum of two-three sentences [1]
 - Provide context of the proposed method [1]
 - Finding papers relevant to the given paper [1]
 - Pose an ORIGINAL question or problem related to the overall goal of the paper [1]
- Proposed Methodology [4]
 - Identification of a valid flaw in the design or proof of the proposed method OR Demonstrate that the design or proof of the proposed method is convincing [1]
 - Suggest reasonable improvement to the proposed method [1]
 - Propose an original and plausible application [1]
 - Meaningful comparison of the proposed method to that of another paper [1]
- Experiment Design [2]
 - Identify a valid shortcoming about experimental design OR demonstrate that the experimental design is convincing [1]
 - Suggest a reasonable improvement in experiment design [1]
- Results [2]
 - Identify a valid shortcoming in results Or explain how the results are convincing [1]
 - Meaningful comparison of the state of the art results [1]
- Presentation [3]
 - Grammar, writing skill and use of scholarly tone [2]
 - Presentation [1]
- Total Marks: 15

How to Critique

Marshall, Gill. "Critiquing a Research Article."
 Radiography 11, no. 1 (February 2005): 55–59.
 doi:10.1016/j.radi.2004.09.001.

End of Lecture-1

We want to make a machine that will be proud of us.

- Danny Hillis