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Preliminaries: Introduction to COP

• The constrained optimization problem (COP) can 
be expressed in its general form as follows

• Example
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Constrained Optimization: Example

• You are given a string of length L. You are to tie it around a 
rectangular gift box (l x w x h) with a constant or fixed width ‘w’ using 
any length of this string (up to L).

• Can you find the dimensions (length and height only since the width 
is fixed) of the box with the largest volume that you can tie with this 
string?

• Mathematically
• Optimize the objective function

• Max V=wlh

• Subject to constraints
• 2(l+h)≤L
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Lagrangian Formulation

• Lagrange proposed a method for the solution of COP

• f(x) and gi(x) are convex functions

• hi(x) are affine functions
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Lagrangian Formulation…
• The solution proposed by Lagrange is based on the 

following unconstrained minimization

• Where          and         have the following properties

• Large penalties added when the constraints are not satisfied
• Unconstrained optimization now leads to satisfaction of the constrains and 

then optimization of the original objective function
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Lagrangian Formulation…

• One possible way of achieving the above mentioned properties for 
the two penalty functions is as follows
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When the constraint is violated 
(gi(x)>0) the maximization with 
respect to αi leads to infinity as 
long as αi is non-negative

When the constraint is not 
violated the maximization with 
respect to αi leads to zero as long 
as αi is non-negative
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Lagrangian Formulation…

• Thus we can write the optimization problem as

• αi and βi are called Lagrange multipliers (or dual variables) and the 
function (below) is called the Lagrange Function
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Lagrangian function: Gift example

• The problem can be rewritten as 

• Min f(x) = -x1x2

• Subject to constraints

2(x1+x2) ≤ L, OR

g(x) = 2(x1+x2) – L ≤ 0

• This implies
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Lagrangian function: example…

• This can be solved as
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