

Introduction to method of Lagrange Multipliers Dr. Fayyaz ul Amir Afsar Minhas

PIEAS Biomedical Informatics Research Lab Department of Computer and Information Sciences Pakistan Institute of Engineering & Applied Sciences PO Nilore, Islamabad, Pakistan http://faculty.pieas.edu.pk/fayyaz/

Preliminaries: Introduction to COP

• The constrained optimization problem (COP) can be expressed in its general form as follows

• Example
$$\begin{array}{l} \min_{\mathbf{x}} f(\mathbf{x}) \\ \text{subject to} \\ g_i(\mathbf{x}) \leq 0 \\ h_i(\mathbf{x}) = 0 \end{array} \begin{array}{l} i = 1 \dots m \\ i = 1 \dots p \end{array}$$

Constrained Optimization: Example

- You are given a string of length L. You are to tie it around a rectangular gift box (I x w x h) with a constant or fixed width 'w' using any length of this string (up to L).
- Can you find the dimensions (length and height only since the width is fixed) of the box with the largest volume that you can tie with this string?
- Mathematically
 - Optimize the objective function
 - Max V=wlh
 - Subject to constraints
 - 2(l+h)≤L

Lagrangian Formulation

• Lagrange proposed a method for the solution of COP

 $\begin{array}{ll} \min_{\mathbf{x}} & f(\mathbf{x}) \\ \text{subject to} \\ g_i(\mathbf{x}) \leq 0 & i = 1...m \\ h_i(\mathbf{x}) = 0 & i = 1...p \end{array}$

- f(x) and g_i(x) are convex functions
- h_i(x) are affine functions

Lagrangian Formulation. • The solution proposed by Lagrange is based on the following unconstrained minimization

$$\min_{\mathbf{x}} \quad f(\mathbf{x}) + \sum_{i=1}^{m} L_{i}^{g}(\mathbf{x}) + \sum_{i=1}^{p} L_{i}^{h}(\mathbf{x})$$

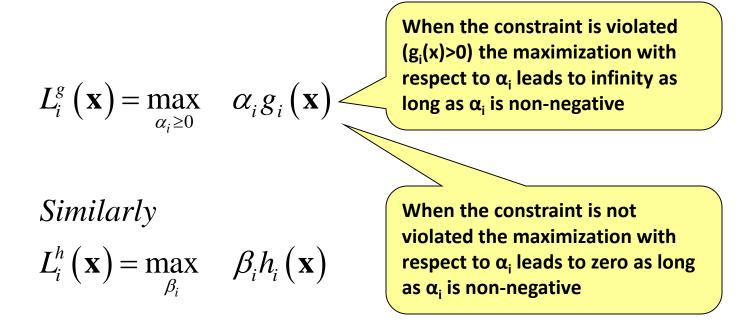
• Where $L_{i}^{s}(\mathbf{x})$ and $L_{i}^{h}(\mathbf{x})$ have the following properties

$$L_{i}^{g}(\mathbf{x}) = \begin{cases} \infty & g_{i}(\mathbf{x}) > 0\\ 0 & else \end{cases}, \qquad i = 1...m$$
$$L_{i}^{h}(\mathbf{x}) = \begin{cases} \infty & h_{i}(\mathbf{x}) \neq 0\\ 0 & else \end{cases}, \qquad i = 1...p$$

- Large penalties added when the constraints are not satisfied
 - Unconstrained optimization now leads to satisfaction of the constrains and then optimization of the original objective function

Lagrangian Formulation...

 One possible way of achieving the above mentioned properties for the two penalty functions is as follows



Lagrangian Formulation...

• Thus we can write the optimization problem as

$$\min_{\mathbf{x}} f(\mathbf{x}) + \sum_{i=1}^{m} \max_{\alpha_i \ge 0} \alpha_i g_i(\mathbf{x}) + \sum_{i=1}^{p} \max_{\beta_i} \beta_i h_i(\mathbf{x})$$
$$\equiv \min_{\mathbf{x}} f(\mathbf{x}) + \max_{\alpha_i \ge 0, \beta_i} \left(\sum_{i=1}^{m} \alpha_i g_i(\mathbf{x}) + \sum_{i=1}^{p} \beta_i h_i(\mathbf{x}) \right)$$
$$\equiv \min_{\mathbf{x}} \max_{\alpha_i \ge 0, \beta_i} f(\mathbf{x}) + \left(\sum_{i=1}^{m} \alpha_i g_i(\mathbf{x}) + \sum_{i=1}^{p} \beta_i h_i(\mathbf{x}) \right)$$

• α_i and β_i are called Lagrange multipliers (or dual variables) and the function (below) is called the Lagrange Function

$$L(\mathbf{x}, \boldsymbol{\alpha}, \boldsymbol{\beta}) = f(\mathbf{x}) + \left(\sum_{i=1}^{m} \alpha_{i} g_{i}(\mathbf{x}) + \sum_{i=1}^{p} \beta_{i} h_{i}(\mathbf{x})\right)$$

Lagrangian function: Gift example

- The problem can be rewritten as
 - Min $f(x) = -x_1x_2$
 - Subject to constraints
 - $2(x_1+x_2) \le L, OR$ $g(x) = 2(x_1+x_2) - L \le 0$
- This implies

$$L(\mathbf{x}, \boldsymbol{\alpha}) = f(\mathbf{x}) + \alpha_1 g_1(\mathbf{x})$$
$$= -x_1 x_2 + \alpha_1 (2(x_1 + x_2) - L))$$

Lagrangian function: example...

• This can be solved as

 $\min_{\mathbf{x}} \max_{\alpha_i \ge 0} L(x_1, x_2, \alpha) = -x_1 x_2 + \alpha_1 \left(2(x_1 + x_2) - L \right)$ $\frac{\partial L}{\partial \alpha} = 2(x_1 + x_2) - L = 0 \qquad \Rightarrow \qquad x_1 + x_2 = \frac{L}{2}$ $\frac{\partial L}{\partial x_1} = -x_1 + 2\alpha_1 = 0 \qquad \Rightarrow \qquad x_1 = 2\alpha_1$ $\frac{\partial L}{\partial x_2} = -x_2 + 2\alpha_1 = 0 \qquad \Rightarrow \qquad x_2 = 2\alpha_1$ $\Rightarrow \qquad x_1 = x_2 = \frac{L}{4}$