

Support Vector Machine Formulation

Dr. Fayyaz ul Amir Afsar Minhas

PIEAS Biomedical Informatics Research Lab

Department of Computer and Information Sciences

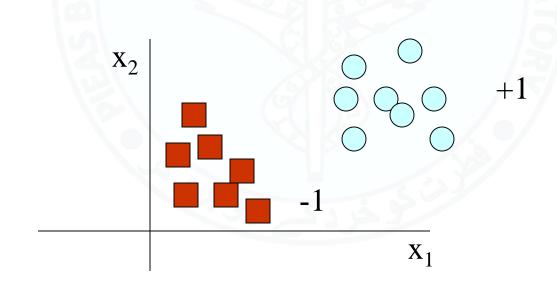
Pakistan Institute of Engineering & Applied Sciences

PO Nilore, Islamabad, Pakistan

http://faculty.pieas.edu.pk/fayyaz/

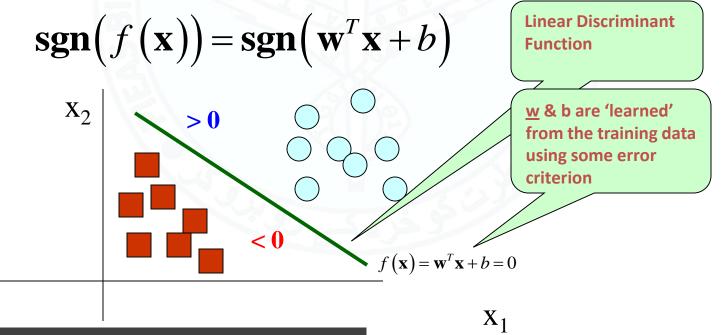
Classification

- Before moving on with the discussion let us restrict ourselves to the following problem
 - T = Given Training Set = $\{(\underline{x}^{(i)}, y_i), i = 1...N\}$
 - <u>x</u>⁽ⁱ⁾ε R^m {Data Point i }
 - y_i: class of data point i (+1 or -1)



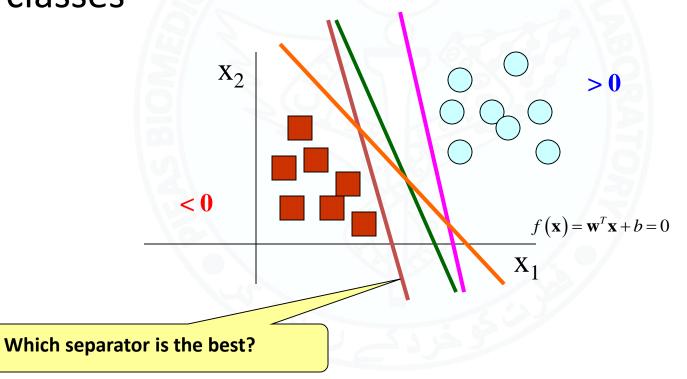
Use of Linear Discriminant in Classification

- Classifiers such as the Single Layer Perceptron (with linear activation function) and SVM use a linear discriminant function to differentiate between patterns of different classes
- The linear discriminant function is given by

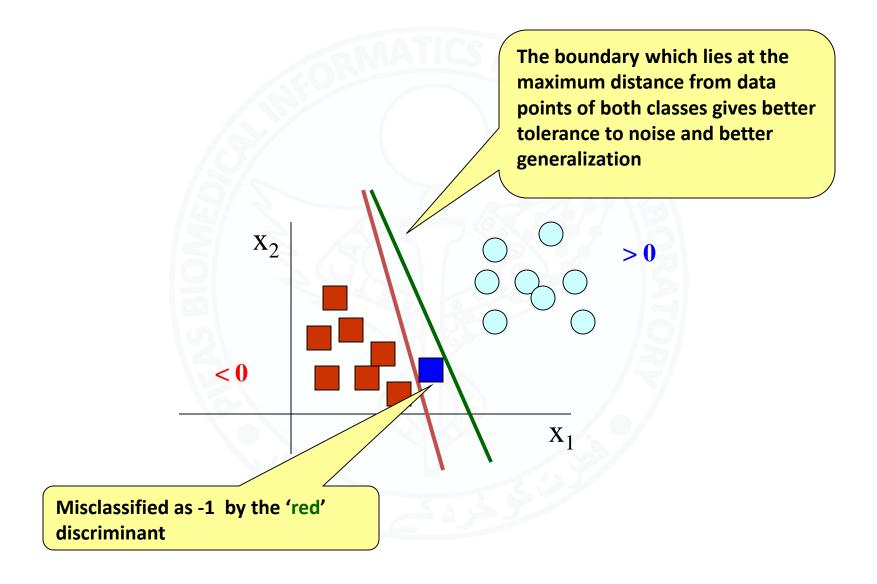


Use of Linear Discriminant in Classification

 There are a large number of lines (or in general 'hyperplanes') separating the two classes

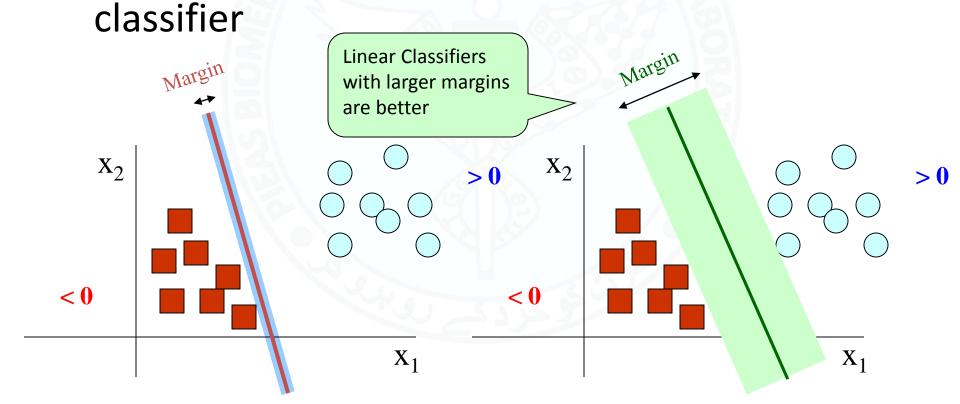


Use of Linear Discriminant in Classification



Margin of a linear classifier

 The width by which the boundary of a linear classifier can be increased before hitting a data point is called the margin of the linear



Support Vector Machines (SVM)

- Support Vector Machines are linear classifiers that produce the optimal separating boundary (hyper-plane)
 - Find w and b in a way so as to maximize the margin while classifying all the training patterns correctly (for linearly separable problem)

 Consider a linear classifier with the boundary

$$f(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + b = 0$$
 for all \mathbf{x} on the boundary

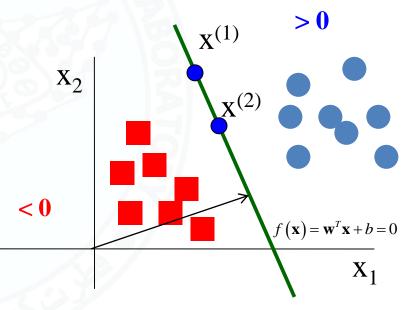
- We know that the vector w is perpendicular to the boundary
 - Consider two points x⁽¹⁾ and x⁽²⁾ on the boundary

$$f\left(\mathbf{x}^{(1)}\right) = \mathbf{w}^T \mathbf{x}^{(1)} + b = 0 \tag{1}$$

$$f\left(\mathbf{x}^{(2)}\right) = \mathbf{w}^T \mathbf{x}^{(2)} + b = 0 \tag{2}$$

Subtracting (1) from (2)

$$\mathbf{w}^{T}\left(\mathbf{x}^{(2)}-\mathbf{x}^{(1)}\right)=0 \qquad \Rightarrow \qquad \mathbf{w}\perp\left(\mathbf{x}^{(2)}-\mathbf{x}^{(1)}\right)$$



 Let x^(s) be a point in the feature space with its projection x^(p) on the boundary

$$f\left(\mathbf{x}^{(p)}\right) = \mathbf{w}^T \mathbf{x}^{(p)} + b = 0$$

We know that,

$$\mathbf{x}^{(s)} = \mathbf{x}^{(p)} + r\hat{\mathbf{w}}$$

$$\Rightarrow f\left(\mathbf{x}^{(s)}\right) = \mathbf{w}^{\mathsf{T}}\mathbf{x}^{(s)} + b$$

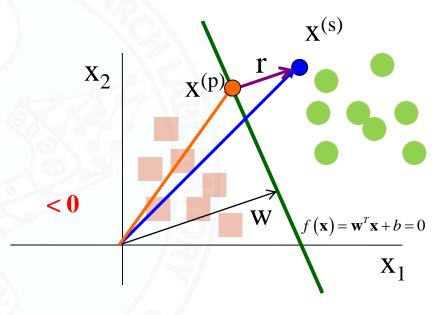
$$= \mathbf{w}^{\mathsf{T}}\left(\mathbf{x}^{(p)} + r\hat{\mathbf{w}}\right) + b$$

$$= \mathbf{w}^{\mathsf{T}}\mathbf{x}^{(p)} + r\mathbf{w}^{\mathsf{T}}\hat{\mathbf{w}} + b$$

$$= \mathbf{w}^{\mathsf{T}}\mathbf{x}^{(p)} + b + r\mathbf{w}^{\mathsf{T}}\frac{\mathbf{w}}{\|\mathbf{w}\|}$$

$$= 0 + r\|\mathbf{w}\| = r\|\mathbf{w}\|$$

$$\Rightarrow r = \frac{f\left(\mathbf{x}^{(s)}\right)}{\|\mathbf{x}\|}$$



Perpendicular
Distance of a point from a line

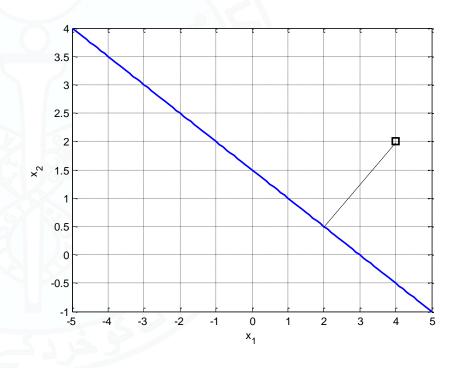
Example

Consider the line

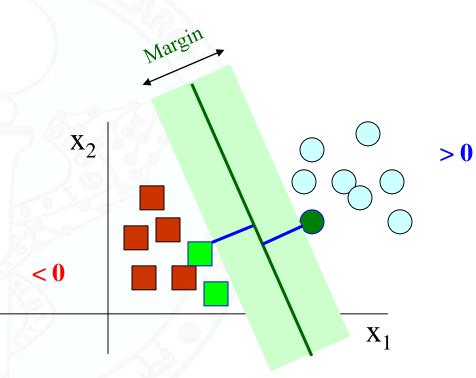
$$- x_1 + 2x_2 + 3 = 0$$

 The distance of (4,2) is

$$- r = 4.92$$



- The points in the training set that lie closest (having minimum perpendicular distance) to the separating hyper-plane are called support vectors
- Margin is twice of perpendicular distances of the hyper-plane from the nearest support vector of the two classes



$$\rho = 2|r| = 2 \left| \frac{f(\mathbf{x}^*)}{\|\mathbf{w}\|} \right|$$
 Near

Nearest Support Vector

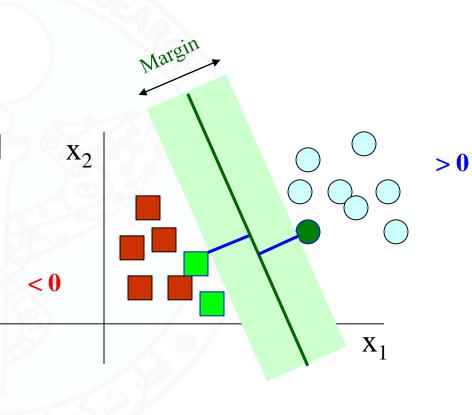
Geometric vs. Functional Margin

Functional Margin

This gives the position
 of the point with
 respect to the plane,
 which does not depend
 on the magnitude.

Geometric Margin

 This gives the distance between the given training example and the given plane.



• Assume that all data is at least distance 1 from the hyperplane, then the following two constraints follow for a training set $\{(x^{(i)}, y_i)\}$

$$\mathbf{w}^{\mathbf{T}}\mathbf{x}^{(\mathbf{i})} + b \ge 1 \quad \text{if } y_i = 1$$

$$\mathbf{w}^{\mathbf{T}}\mathbf{x}^{(\mathbf{i})} + b \le -1 \quad \text{if } y_i = -1$$

$$\Rightarrow \rho = 2|r| = 2\left|\frac{f(\mathbf{x}^*)}{\|\mathbf{w}\|}\right| = 2\left|\frac{\pm 1}{\|\mathbf{w}\|}\right|$$

$$\rho = \frac{2}{\|\mathbf{w}\|}$$

Support Vector Machines

- Support Vector Machines, in their basic form, are linear classifiers that are trained in a way so as to maximize the margin
- Principles of Operation
 - Define what an optimal hyper-plane is (in way that can be identified in a computationally efficient way)
 - Maximize margin
 - Allows noise tolerance
 - Extend the above definition for non-linearly separable problems
 - have a penalty term for misclassifications
 - Map data to an alternate space where it is easier to classify with linear decision surfaces
 - reformulate problem so that data is mapped implicitly to this space (using kernels)

Margin Maximization in SVM

We know that if we require

$$\mathbf{w}^{\mathbf{T}}\mathbf{x}^{(\mathbf{i})} + b \ge 1 \quad \text{if } y_i = 1$$
$$\mathbf{w}^{\mathbf{T}}\mathbf{x}^{(\mathbf{i})} + b \le -1 \quad \text{if } y_i = -1$$

Then the margin is

$$\rho = \frac{2}{\|\mathbf{w}\|}$$

 Margin maximization can be performed by reducing the norm of the w vector

SVM as an Optimization problem

We can present SVM as the following optimization problem

$$\max \quad \rho = \frac{2}{\|\mathbf{w}\|}$$
s.t.
$$\mathbf{w}^T \mathbf{x}^{(i)} + b \le -1, \quad \forall i \text{ s.t. } y_i = -1$$

$$\mathbf{w}^T \mathbf{x}^{(i)} + b \ge +1, \quad \forall i \text{ s.t. } y_i = +1$$
OR
$$\min \quad \rho = \frac{1}{2} \mathbf{w}^T \mathbf{w}$$
s.t.
$$y_i \left(\mathbf{w}^T \mathbf{x}^{(i)} + b \right) \ge +1$$