Deep Learning in Biomedical

Informatics
Dr. Fayyaz ul Amir Afsar Minhas

PIEAS Biomedical Informatics Research Lab
Department of Computer and Information Sciences
Pakistan Institute of Engineering & Applied Sciences

PO Nilore, Islamabad, Pakistan
http://faculty.pieas.edu.pk/fayyaz/

CIS 622: Machine Learning in Bioinformatics PIEAS Biomedical Informatics Research Lab

http://faculty.pieas.edu.pk/fayyaz/

Lecture Plan

. What are Neural Networks?
— Fundamentals
* Connectionism
* Multilayer Perceptron
* Understanding issues in MLP
* Making neural networks in Keras
. Why go Deep?
. Issues in deep learning
— How to solve those issues?

. Modern practices in Deep Learning
— Convolutional Neural Networks
Residual Networks
Generative Models
e Auto-encoders: VAE, NAE
* Generative Adversarial Networks
e Recurrent Neural Networks
— Recurrent Models: RNN, LSTM
— Neural Networks with Stochastic Depth
— Other architectures: Ladder, Highway, etc.
— Transfer Learning
— Zero-shot and One-shot learning
— Non-Neural Deep Learning
* Multilayer Kernel Machines
* Convolutional Kernel Networks: https://arxiv.org/abs/1406.3332

* When Correlation Filters Meet Convolutional Neural Networks for Visual Tracking
. Applications
— Biomedical applications of deep learning

CIS 622: Machine Learning in Bioinformatics PIEAS Biomedical Informatics Research Lab

https://arxiv.org/abs/1406.3332

* Deep learning in bioinformatics

— https://academic.oup.com/bib/article-
abstract/doi/10.1093/bib/bbw068/2562808/Deep
-learning-in-
bioinformatics?redirectedFrom=fulltext

* Deep learning for computational biology
— http://msb.embopress.org/content/12/7/878

CIS 622: Machine Learning in Bioinformatics PIEAS Biomedical Informatics Research Lab

https://academic.oup.com/bib/article-abstract/doi/10.1093/bib/bbw068/2562808/Deep-learning-in-bioinformatics?redirectedFrom=fulltext
http://msb.embopress.org/content/12/7/878

Interesting codes

skFlow: http://www.kdnuggets.com/2016/02/scikit-flow-easy-deep-learning-tensorflow-scikit-
learn.html

Trained image classification models for Keras [COVER]
— https://github.com/fchollet/deep-learning-models

Transfer Learning: Recognition of traffic lights [COVER]
(https://medium.freecodecamp.com/recognizing-traffic-lights-with-deep-learning-23dae23287cc)

OR Building powerful image classification models using very little data:
https://blog.keras.io/building-powerful-image-classification-models-using-very-little-data.html

Building auto-encoders: https://blog.keras.io/building-autoencoders-in-keras.html [COVER]
Deep Networks with Stochastic Depth [COVER]

Visualization: https://blog.keras.io/how-convolutional-neural-networks-see-the-world.html
[COVER]

Time Series Prediction with LSTM Recurrent Neural Networks in Python with Keras [COVER]

— http://machinelearningmastery.com/time-series-prediction-Istm-recurrent-neural-networks-python-keras/
Takken from: https://github.com/fchollet/keras-resources
Cycle GAN: https://github.com/junyanz/CycleGAN

CIS 622: Machine Learning in Bioinformatics PIEAS Biomedical Informatics Research Lab

http://www.kdnuggets.com/2016/02/scikit-flow-easy-deep-learning-tensorflow-scikit-learn.html
https://github.com/fchollet/deep-learning-models
https://medium.freecodecamp.com/recognizing-traffic-lights-with-deep-learning-23dae23287cc
https://blog.keras.io/building-powerful-image-classification-models-using-very-little-data.html
https://blog.keras.io/building-autoencoders-in-keras.html
https://github.com/dblN/stochastic_depth_keras
https://blog.keras.io/how-convolutional-neural-networks-see-the-world.html
http://machinelearningmastery.com/time-series-prediction-lstm-recurrent-neural-networks-python-keras/
https://github.com/fchollet/keras-resources
https://github.com/junyanz/CycleGAN

Papers

. Deep Learning Papers Reading Roadmap from : https://github.com/songrotek/Deep-Learning-Papers-Reading-
Roadmap

Krizhevsky, Alex, llya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep convolutional neural networks."
Advances in neural information processing systems. 2012. [pdf] (AlexNet, Deep Learning Breakthrough)

He, Kaiming, et al. "Deep residual learning for image recognition." arXiv preprint arXiv:1512.03385 (2015). [pdf](ResNet,Very
very deep networks, CVPR best paper)

Andrychowicz, Marcin, et al. "Learning to learn by gradient descent by gradient descent." arXiv preprint arXiv:1606.04474
(2016). [pdf] (Neural Optimizer,Amazing Work)

Han, Song, Huizi Mao, and William J. Dally. "Deep compression: Compressing deep neural network with pruning, trained
quantization and huffman coding." CoRR, abs/1510.00149 2 (2015). [pdf] (ICLR best paper, new direction to make NN running
fast,DeePhi Tech Startup)

landola, Forrest N., et al. "SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and< 1MB model size." arXiv
preprint arXiv:1602.07360 (2016). [pdf] (Also a new direction to optimize NN,DeePhi Tech Startup)

Le, Quoc V. "Building high-level features using large scale unsupervised learning." 2013 IEEE international conference on
acoustics, speech and signal processing. IEEE, 2013. [pdf] (Milestone, Andrew Ng, Google Brain Project, Cat)

Goodfellow, lan, et al. "Generative adversarial nets." Advances in Neural Information Processing Systems.

2014. [pdf](GAN,super cool idea)

Sutskever, llya, Oriol Vinyals, and Quoc V. Le. "Sequence to sequence learning with neural networks." Advances in neural
information processing systems. 2014. [pdf] (Outstanding Work)

Graves, Alex, Greg Wayne, and Ivo Danihelka. "Neural turing machines." arXiv preprint arXiv:1410.5401 (2014). [pdf](Basic
Prototype of Future Computer)

Silver, David, et al. "Mastering the game of Go with deep neural networks and tree search." Nature 529.7587 (2016): 484-
489. [pdf] (AlphaGo)

Silver, Daniel L., Qiang Yang, and Lianghao Li. "Lifelong Machine Learning Systems: Beyond Learning Algorithms." AAAI Spring
Symposium: Lifelong Machine Learning. 2013. [pdf] (A brief discussion about lifelong learning)

Hariharan, Bharath, and Ross Girshick. "Low-shot visual object recognition." arXiv preprint arXiv:1606.02819 (2016). [pdf](A
step to large data)

Deep Networks with Stochastic Depth
Failures of Gradient-Based Deep Learning https://arxiv.org/abs/1703.07950

Understanding deep learning requires rethinking generalization:
https://openreview.net/forum?id=Sy8gdB9Ixx¬eld=Sy8gdBIxx

https://github.com/sbrugman/deep-learning-papers

CIS 622: Machine Learning in Bioinformatics PIEAS Biomedical Informatics Research Lab

https://github.com/songrotek/Deep-Learning-Papers-Reading-Roadmap
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://arxiv.org/pdf/1512.03385.pdf
https://arxiv.org/pdf/1606.04474
https://pdfs.semanticscholar.org/5b6c/9dda1d88095fa4aac1507348e498a1f2e863.pdf
http://arxiv.org/pdf/1602.07360
http://arxiv.org/pdf/1112.6209.pdf&embed
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
http://papers.nips.cc/paper/5346-information-based-learning-by-agents-in-unbounded-state-spaces.pdf
http://arxiv.org/pdf/1410.5401.pdf
http://willamette.edu/~levenick/cs448/goNature.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.696.7800&rep=rep1&type=pdf
http://arxiv.org/pdf/1606.02819
https://arxiv.org/abs/1703.07950
https://openreview.net/forum?id=Sy8gdB9xx¬eId=Sy8gdB9xx
https://github.com/sbrugman/deep-learning-papers

Papers

Failures of Gradient-Based Deep Learning (https://arxiv.org/abs/1703.07950) [COVER]

Efficient Processing of Deep Neural Networks: A Tutorial and Survey (https://arxiv.org/abs/1703.09039) [COVER]

Deeo Networks with Stochastic Depth (https://arxiv.org/abs/1603.09382, https://github.com/dbIN/stochastic_depth keras)
Deep residual learning for image recognition (2016), K. He et al. (http://arxiv.org/pdf/1512.03385)

CNN Application: http://www.kdnuggets.com/2017/04/medical-image-analysis-deep-learning-part-2.html| [COVER]

The Shattered Gradients Problem: If resnets are the answer, then what is the question?

Scaling the Scattering Transform: Deep Hybrid Networks : We use the scattering network as a generic and fixed initialization of the first layers of a
supervised hybrid deep network. We show that early layers do not necessarily need to be learned, providing the best results to-date with pre-defined
representations while being competitive with Deep CNNs. [COVER]

Applications (summarized)
- https://github.com/gokceneraslan/awesome-deepbio

FractalNet: Ultra-Deep Neural Networks without Residuals (https://arxiv.org/abs/1605.07648)

How to Scale Up Kernel Methods to Be As Good As Deep Neural Nets

Deep Semi-Random Features for Nonlinear Function Approximation

Steps toward deep kernel methods from infinite neural networks

Progressive Neural Networks

Learning Infinite—Layer Networks. Beyond the Kernel Trick.

Gradient Descent Learns Linear Dynamical Systems

Unsupervised representation learning with deep convolutional generative adversarial networks (https://arxiv.org/pdf/1511.06434v2)
- GAN-Zoo: https://deephunt.in/the-gan-z00-79597dc8c347

Highway Networks (https://arxiv.org/abs/1505.00387) : Highway networks with hundreds of layers can be trained directly using stochastic gradient
descent and with a variety of activation functions, opening up the possibility of studying extremely deep and efficient architectures.

Lensless Imaging with Compressive Ultrafast Sensing

NIPS 2016 Tutorial: Generative Adversarial Networks lan Goodfellow OpenAl, ian@openai.com Abstract,
C:/Users/afsar/Downloads\1701.00160v1.pdf

Image De-raining Using a Conditional Generative Adversarial Network
On the Origin of Deep Learning

Deep Semi-Random Features for Nonlinear Function Approximation
On-line Learning with Abstention

One-ShotImitationLearning

Comparisons of Sequence Labeling Algorithms and Extensions

CIS 622: Machine Learning in Bioinformatics PIEAS Biomedical Informatics Research Lab

https://arxiv.org/abs/1703.07950
https://arxiv.org/abs/1703.09039
https://arxiv.org/abs/1603.09382
https://github.com/dblN/stochastic_depth_keras
http://arxiv.org/pdf/1512.03385
http://www.kdnuggets.com/2017/04/medical-image-analysis-deep-learning-part-2.html
https://arxiv.org/pdf/1702.08591.pdf
https://arxiv.org/pdf/1703.08961.pdf
https://github.com/gokceneraslan/awesome-deepbio
https://arxiv.org/abs/1605.07648
https://arxiv.org/pdf/1511.06434v2
https://deephunt.in/the-gan-zoo-79597dc8c347
https://arxiv.org/abs/1505.00387

Style Transfoer: Real-time style transfer

Image Analogies: Image analogies

Deep Dreams

Deep Jazz: https://github.com/jisungk/deepjazz

Image Colorization

Caption Generation: https://arxiv.org/pdf/1411.4555.pdf

Lip Reading: LipNet: End-to-End Sentence-level Lipreading https://arxiv.org/abs/1611.01599

2012-07 | Deep architectures for protein contact map prediction | Pietro Di Lena, Ken Nagata and Pierre
BaldiBioinformatics

2016-11 | Accurate De Novo Prediction of Protein Contact Map by Ultra-Deep Learning Model | Sheng Wang, Siqi
Sun, Zhen Li, Renyu Zhang, Jinbo Xu | bioRxiv

Dermatologist-level classification of skin cancer with deep neural networks | Andre Esteva, Brett Kuprel, Roberto
A. Novoa, Justin Ko, Susan M. Swetter, Helen M. Blau & Sebastian Thrun | Nature

Deep Recurrent Neural Network for Protein Function Prediction from Sequence | Xueliang Leon Liu | bioRxiv

Deep Motif Dashboard: Visualizing and Understanding Genomic Sequences Using Deep Neural Networks
| Lanchantin, Jack, Ritambhara Singh, Beilun Wang, and Yanjun Qi | Pacific Symposium on Biocomputing 2017

Convolutional neural network architectures for predicting DNA—protein binding | Haoyang Zeng, Matthew D.
Edwards, Ge Liu and David K. Gifford | Bioinformatics | code

Predicting protein residue—residue contacts using deep networks and boosting | Jesse Eickholt and Jianlin
Cheng | Bioinformatics

https://lyrebird.ai/demo

Medical Image Analysis with Deep Learning: http://www.kdnuggets.com/2017/04/medical-image-analysis-deep-
learning-part-2.html

CIS 622: Machine Learning in Bioinformatics PIEAS Biomedical Informatics Research Lab

https://github.com/awentzonline/keras-rtst
https://github.com/awentzonline/image-analogies
https://github.com/jisungk/deepjazz
https://arxiv.org/abs/1611.01599
https://doi.org/10.1093/bioinformatics/bts475
https://doi.org/10.1101/073239
https://doi.org/10.1038/nature21056
https://doi.org/10.1101/103994
http://dx.doi.org/10.1142/9789813207813_0025
https://doi.org/10.1093/bioinformatics/btw255
http://cnn.csail.mit.edu/
https://doi.org/10.1093/bioinformatics/bts598
https://lyrebird.ai/demo
http://www.kdnuggets.com/2017/04/medical-image-analysis-deep-learning-part-2.html

Neural Networks

* An abstraction of the biological neuron

Dendrite

| Axon Brminal

Node of
Flar"-:.'ile-l

Cell hody

Mucleus

J

summation non-linearity

uy = E! Wiy ¥y h = f{u']
(b)

H:‘__V'yi/:
N

Ln

CIS 622: Machine Learning in Bioinformatics PIEAS Biomedical Informatics Research Lab 8

Deep Learning

Artificial Intelligence

* Traditional machine learning
focuses on feature engineering

 Deep learningis a branch of
machine learning
— That uses a cascade of many layers

of non-linear units for feature
extraction and transformation

— Based on “automatic” learning of
multiple levels of features or
representations of the data

* Re-branding of neural networks!

— Massive growth in efficient
algorithms for solving Al

challenges!
 Many Applications in Biomedical 22%
Informatics %E.S AlphaGo

CIS 622: Machine Learning in Bioinformatics PIEAS Biomedical Informatics Research Lab 9

Low-Level_Mid-Level I-Iigh-Level_. Trainable
Feature Feature Feature Classifier

Figure: Picture from Yann LeCun'’s tutorial, based on Zeiler and Fergus [2014].

CIS 622: Machine Learning in Bioinformatics PIEAS Biomedical Informatics Research Lab

Multilayer Perceptron

* Consists of multiple layers of neurons

e Layers of units other than the input and
output are called hidden units

e Unidirectional weight connections and
biases

e Activation functions

— Use of activation functions
* Sigmoidal activations

* Nonlinear Operation: Ability to solve
practical problems

e Differentiable: Makes theoretical
assessment easier

* Derivative can be expressed in terms of
functions themselves: Computational
Efficiency

— Activation function is the same for all J -
H n
neurons in the same layer 2_in =3 xv;, X, =1, j=1..p
— Input layer just passes on the signal 1=0
without processing (linear operation) = (y_ink)
p
y_mk:Zézjwjk, z,=1, k=1..m
J:

CIS 622: Machine Learning in Bioinformatics PIEAS Biomedical Informatics Research Lab 11

Architecture: Activation functions

Binary Sigmoid and its derivative Bipolar Sigmmoid and its derivative
T

3
1 1 —)
2
— 0 / 0.8 £, ,/

T - L
0.6 0.2 /
/

INERVN : /
.] / \ 0.8 /’/

y, dy

\
y,dy
o

8 6 4 2 0 2 4 6 8 -8 6 4 2 0 2 4 6 8
1 - 2 _
Fulx) = T+ exp(—x) Fa(x) 1 + exp(—x) "

Fi(x) = FL0 = £1(x0)] f3(x) = —2'—[1 + £l = F200).

CIS 622: Machine Learning in Bioinformatics PIEAS Biomedical Informatics Research Lab

Training

During training we are presented with input patterns
and their targets

At the output layer we can compute the error
between the targets and actual output and use it to
compute weight updates through the Delta Rule

But the Error cannot be calculated at the hidden input
as their targets are not known

Therefore we propagate the error at the output units
to the hidden units to find the required weight
changes (Backpropagation)
3 Stages

— Feed-forward of the input training pattern

— Calculation and Backpropagation of the
associated error

— Weight Adjustment
Based on minimization of SSE (Sum of Square Errors)

CIS 622: Machine Learning in Bioinformatics PIEAS Biomedical Informatics Research Lab

13

Backpropagation training cycle

Feed forward

Backpropagation
CIS 622: Machine Learning in Bioinformatics PIEAS Biomedical Informatics Research Lab 14

Proof for the Learning Rule

E =52t — yiI-
k

By the Chain rule, we have:

oF d
Wik 9 .5 2 [tx — y4)? Changein Wi
e Wik ok affects only Y,

9
= Sltx = f-nl

oW,k

= —If —]

[1x Y] Wk f(.)’—mx)
_— ’ r a -
= ~ltx — y&l f'(y-ing) (y—-ink)

oW, x
= —{tx — yxl f'(y_inx)z,. o= — ok
Awjy = — « Wk Use of
. Gradient
Define: = alty — yilf'(y—inx)z; Descent
SK = [tK _ yK] f,(y—in]{)'- _ as 7. . Minimization
- KGjy

CIS 622: Machine Learning in Bioinformatics PIEAS Biomedical Informatics Research Lab 15

Proof for the Learning Rule...

For the weight from x; to z;: % 9\
oF 0 Wol \ Wox/ wo/ j

= —2 [tk — yk] —yk Changeinvij
k

0v;y av” affectsall Y, ,

' . d _

= —2 [tk - yk] f(y—lﬂk)—'—""y_jnk o

k s

Jd .

= “2 O — yan;

k 0V1s
= _E B8, w _9 Change inv; (7

| k i vy ¢ affects only z;
= =3 3w f'(zin)lxa). BE
Define: Py

f_lf'(z-—inj)xi 2 8ijk,
k

8, = X dewnf'(ziny)
k

= aﬁ,x,.
Use of Gradient Descent Minimization
CIS 622: Machine Learning in Bioinformatics PIEAS Biomedical Informatics Research Lab 16

Step 0. Initialize weights. Tra iNni ng
(Set to small random values).

Step 1. While stopping condition is false, do Steps 2-9. AlgO r|th m
Step 2. For each training pair, do Steps 3-8.
Feedforward:

Step 3. Each input unit (X;, i = 1, ..., n) receives i
input signal x; and broadcasts this signal to all o .
units in the layer above (the hidden units). ::>

Step 4. Each hidden unit(Z;,j = 1,. . ., p) sums its |::>
weighted input signals,

zin; = vo; + 2 XiUjj,
i =1
L] - '. - X-
applies its activation function to compute its
output signal,

@@%

Z; = f(z-in;),

and sends this signal to all units in the layer
above (output units).

Step 5. Each output unit (Yx, kK = 1, ..., m) sums
its weighted input signals,

P
Y-ing = wor + 2 ZiWik
Jj=1
and applies its activation function to compute
its output signal,

?

OOOOOOOOAAA‘

Yi = fy—ing).

CIS 622: Machine Learning in Bioinformatics PIEAS Biomedical Informatics Research Lab 17

Training Algorithm...

Backpropagation of error: |
Step 6. Each output unit (Y, k = 1,. . ., m)receives
a target pattern corresponding to the input

training pattern, computes its error informa-
tion term,

Or = (tx — yu)f '(y—iny),

calculates its weight correction term (used to
update w;, later),

Q000

ijk = aaij,

calculates its bias correction term (used to up-
date wo, later),

A Wor = (!81{',

and sends 3, to units in the layer below.

CIS 622: Machine Learning in Bioinformatics PIEAS Biomedical Informatics Research Lab 18

Training Algorithm...

Step 7. Each hidden unit (Z;,j = 1, . . . , p) sums its
delta inputs (from units in the layer above),

m
d_in; = D diw,
k=1

mult'iplies by the derivative of its activation
function to calculate its error information
term,

d; = o_in; f'(Z—inj),

Q000

... calculates its weight correction term (used to
update v;; later),

AU,‘j = aﬁjx,-,

and calculates its bias correction term (used
to update vo; later),

Ave; = ad;.

CIS 622: Machine Learning in Bioinformatics PIEAS Biomedical Informatics Research Lab 19

Training Algorithm...

Update weights and biases: |
Step 8. Each output unit (Y, kK = 1,. . ., m) updates
its bias and weights (j = 0, . . ., p):

ij(neW) = ij(()ld) + Aij.

Each hidden unit (Z;,j = 1, . . ., p) updates
its bias and weights (i = 0, . . . , n):

v,-j(new) = 'U,‘j(Old) + A'U",'j.

Step 9. Test stopping condition.

CIS 622: Machine Learning in Bioinformatics PIEAS Biomedical Informatics Research Lab 20

Optimization in minibatches

 We can do a full scale optimization across all
examples or take a few examples at a time to
determine the gradients

— Mini-batches

CIS 622: Machine Learning in Bioinformatics PIEAS Biomedical Informatics Research Lab 21

Things to note

* A large number of derivatives will be computed
— For every input
— For every weight at every layer

 The update is dependent upon

* The activation function value
* The input

* The target

* The current weight value

 The value of the derivative of the activation function of the
current layer

 The value of the derivative of the activation function of the
following layers

* The derivatives are multiplied: Vanishing gradients!
* The error value

CIS 622: Machine Learning in Bioinformatics PIEAS Biomedical Informatics Research Lab

22

Parameter Selection

* A MLP has a large number of parameters
— Number of Neurons in Each Layer
— Number of Layers
— Activation Function for each neuron: RelU, logsig...
— Layer Connectivity: Dense, Dropout...

— Objective function
* Loss Function: MSE, Entropy, Hinge loss, ...
e Regularization: L1, L2...
— Optimization Method
* SGD, ADAM, RMSProp, LM ...
— Parameters for the Optimization method
* Weight initialization
* Momentum, weight decay, etc.

CIS 622: Machine Learning in Bioinformatics PIEAS Biomedical Informatics Research Lab 23

g ok L b e

-= I v B B =]

10
11
12
13
14

16
17
18
19

20

Implementation

Keras! https://keras.io/

from keras.models import Sequential

from keras.layers import Dense

import numpy

seed = 7

numpy .random. seed (seed)

Load the dataset

dataset = numpy.loadtxt("pima-indians-diabetes.csv", delimiter=",")
X = dataset[:,0:8]

Y = dataset[:,8]

Define and Compile

model

model.
model.
model.
model.

Fit
model

= Sequential() # The network is not recurrent and has a sequence of layers

add(Dense(12, input_dim=8, init='uniform', activation='relu')) # Number of layers,
add (Dense(8, init='uniform', activation='relu')) neurons, activations &
add(Dense(1, init='uniform', activation='sigmoid')) weight init.
compile(loss='binary_crossentropy' , optimizer='adam', metrics=['accuracy'])

the model

Loss function and optimization
.fit(X, Y, nb_epoch=150, batch_size=10)

Evaluate the model
scores = model.evaluate(X, Y)

print

("he: %h.2F%4" % (model.metrics_names[1], scores[1]#100))

CIS 622: Machine Learning in Bioinformatics PIEAS Biomedical Informatics Research Lab

24

https://keras.io/

Issues with Neural Networks wit

* Unlike an SVM, which has a
single global optimum due to
its convex loss function, the
error surface of a neural
network is not as smooth

* This complicates the
optimization

e A number of “tricks” are used
to make the neural network
learn

CIS 622: Machine Learning in Bioinformatics

h non-linear activations

PIEAS Biomedical Informatics Research Lab

26

How to improve MLP?

 Don’t let the network stop Awp = abyz;
learning prematurely! 8 = (tx — yf'(y=ing)
Avij = adjx;

— For example: Don’t let the
P 5; = d_in; f'(z-in;)
neurons saturate! m

- . d_i j = o f
* If the input or the gradient goes to = 2, e

zero, the learning stops!

m p 4
Mviy = wxif (v x)) wy (tk —f (Z Wi f(v]-Tx)>> f <2 Wi f(v,rx)>
k=1 j=0 j=0

CIS 622: Machine Learning in Bioinformatics PIEAS Biomedical Informatics Research Lab 27

How to improve MLP?

* How to achieve?
— Weight initialization
* Use Nguyen-Widrow or more sophisticated weight
initialization methods
e Start with small random weights
* Large weights will cause saturation
* Implicit regularization!

RANDOM NGUYEN-WIDROW
Binary Xor 2,891 1,935

CIS 622: Machine Learning in Bioinformatics PIEAS Biomedical Informatics Research Lab 28

How to improve MLP?

* Changes in Data Representation

— Bipolar inputs/targets are better than binary

e Zeros in inputs can cause stalls

— Using clipped bipolar outputs instead of bipolar
ones

e Sigmoidal activation functions will produce a 1.0 or 0.0
only in the asymptote

RANDOM NGUYEN-WIDROW

Binary Xor 2,891 1,935
Bipolar Xor 387 224
Modified bipolar Xokr 264 127

(targets = +0.8 and —0.8)

CIS 622: Machine Learning in Bioinformatics PIEAS Biomedical Informatics Research Lab

29

How to improve MLP?

Behavior of Different Activiation Functions

° ' 5L y=2/(1Jf‘X)/-1 .
Use SIO.\Ally 15 H)s/i:gzr:ar)]lo(g);zltsign(x)x) //
saturating or non- 1 y

. 0.5 //"-——-—
saturating
nonlinear PA Y
activation functions A
s
— Examples: RelU, 2
Log Activation SO fo.) S

x{0, z}

_ log(l + x) forx >0
f@x) {——log(l —x) forx <0.

Gglz) = ma

0

CIS 622: Machine Learning in Bioinformatics PIEAS Biomedical Informatics Research Lab 30

How to improve MLP?

e Effect of log activation

PROBLEM LOGARITHMIC BIPOLAR SIGMOID
standard bipolar Xor - 144 epochs 387 epochs
modified bipolar Xor 77 epochs | 264 epochs -

(targets of +0.8 or —0.8)

CIS 622: Machine Learning in Bioinformatics PIEAS Biomedical Informatics Research Lab 31

Improvements in Optimization

e Use stochastic gradient updates with mini-
batches

— Easy parallelization
* Change learning rate adaptively
 Use momentum (0<u <1) based update

— but too much momentum may cause you to
overshoot the local minima

Aij(t + l) = C!.Sij + MAij(t),

CIS 622: Machine Learning in Bioinformatics PIEAS Biomedical Informatics Research Lab

32

Improving MLP

Data Augmentation

— Create artificial examples
e Addition of noise Error

* Translation of images or other
tranSfOFmS Error on test data
Drop-Off

BatCh Normalization Error on training data
U Se Ea rly Sto p pi ng]nsta:nt when "['rainin;"['imf»

error on test data

hegins to worsen

— Keep track of generalization error
and stop if the generalization
error does not improve enough
even when the error on training
data is going down

CIS 622: Machine Learning in Bioinformatics PIEAS Biomedical Informatics Research Lab 33

Doing all this in Keras
* Layers

model = Sequential()

model.add(Dense(32, input_shape=(500,)))
model.add(Dense(10, activation='softmax'))
model.compile(optimizer="rmsprop’,

loss="'categorical crossentropy', metrics=['accuracy'])

Useful attributes of Model

model.layers: is a flattened list of the layers comprising the model graph.
model.inputs: isthe list of input tensors
model.outputs: is the list of output tensors.

CIS 622: Machine Learning in Bioinformatics PIEAS Biomedical Informatics Research Lab 34

Doing all this in Keras

* Activations from keras.layers import Activation, Dense
model.add(Dense(64))
model.add(Activation('tanh'))

model.add(Dense(64, activation='tanh'))

e Available Activation
— Softmax
— Elu
— Softplus
— Softsign
— Relu
— Tanh
— Sigmoid
— Hard Sigmoid
— Linear

CIS 622: Machine Learning in Bioinformatics PIEAS Biomedical Informatics Research Lab 35

Doing all this in Keras

e Losses

model.compile(loss="mean_squared_error', optimizer='sgd')
from keras import losses model.compile(loss=losses.mean_squared_error, optimizer='sgd')

* Available
— Mean Squared Error
— Mean Absolute Error
— Mean Absolute Percentage Error
— Mean Squared Logarithmic Error
— Squared Hinge
— Hinge
— Categorical Cross Entropy
— Sparse categorical crossentropy
— Binary Crossentropy
— Kullback Leibler Divergence
— Posison
— Cosine Proximity

CIS 622: Machine Learning in Bioinformatics PIEAS Biomedical Informatics Research Lab 36

Doing all this in Keras

* Metrics
— Used to evaluate model performance

from keras import metrics
model.compile(loss="mean_squared error',
optimizer="sgd’,
metrics=[metrics.mae, metrics.categorical accuracy])

* Available
— Binary Accuracy
— Categorical Accuracy
— Sparse Categorical Accuracy
— Top K Categorical Accuracy

— Custom

CIS 622: Machine Learning in Bioinformatics PIEAS Biomedical Informatics Research Lab 37

Doing all this in Keras

* Optimizers

from keras import optimizers
model = Sequential()
model.add(Dense(64, init='uniform', input_shape=(10,)) model.add(Activation('tanh"))
model.add(Activation('softmax"'))
sgd = optimizers.SGD(1lr=0.01, decay=1le-6, momentum=0.9, nesterov=True)
model.compile(loss="mean_squared_error', optimizer=sgd)
* Available
— SGD
— RMSprop
— Adagrad
— AdabDelta
— Adam
— Adamax

— Nadam

CIS 622: Machine Learning in Bioinformatics PIEAS Biomedical Informatics Research Lab 38

Doing all this in Keras

e |nitializers

model.add(Dense(64,
kernel initializer='random uniform’,
bias_initializer='zeros'))

CIS 622: Machine Learning in Bioinformatics PIEAS Biomedical Informatics Research Lab 39

Doing all this in Keras

* Regularization
— L1 and L2

* Drop-Out

e Batch Normalization

CIS 622: Machine Learning in Bioinformatics PIEAS Biomedical Informatics Research Lab 40

Doing all this in Keras

* Data Augmentation

— Noise Layer

— ImageDataGenerator

CIS 622: Machine Learning in Bioinformatics PIEAS Biomedical Informatics Research Lab 41

Class Exercise!

* Requires Keras based computers

* Solve the XOR using a single hidden layer
BPNN with sigmoid activations

— See what is the effect of different parameters on
the convergence characteristics of the neural
network

CIS 622: Machine Learning in Bioinformatics PIEAS Biomedical Informatics Research Lab 42

Universal Function Approximation

* Universal Approximation

— Any function f(x) over m inputs can be represented as follows:
N

— T
F(.X') = z vigo(wi X + bl)
=1
* @(+) is a non-constant, bounded and monotonically-increasing
continuous “basis” function

* Nisthe number of functions
* F(x) is an approximation of f(x), i.e., |f(x) — F(x)| < €
* A neural network with a single hidden layer is a universal
approximator
* Asingle hidden layer neuron with randomly initialized
weights is a universal approximator
— Extreme Learning Machine
— Random Fourier Features as Kernel Approximators

CIS 622: Machine Learning in Bioinformatics PIEAS Biomedical Informatics Research Lab

43

Universal Function Approximation

* A neural network with one hidden layer can
be used to approximate any shape

— However, the approximation might require
exponentially many neurons

— How can we reduce the number of computations?

> % a 4 5
50 0
0 a4 °4
5 5
» @ 4 5

Wang, Haohan, and Bhiksha Raj. “On the Origin of Deep Learning.” arXiv:1702.07800 [Cs, Stat], February 24, 2017.
http://arxiv.org/abs/1702.07800.

CIS 622: Machine Learning in Bioinformatics PIEAS Biomedical Informatics Research Lab

44

http://arxiv.org/abs/1702.07800

Practical Issues in Universal Approximation

* The universal approximation theorem means that
regardless of what function we are trying to learn,

we know that a large MLP will be able to represent
this function.

 However, we are not guaranteed that the training
algorithm will be able to “learn” that function.

— Optimization can fail

— Learning is different from optimization

* The primary requirement for learning is generalization

CIS 622: Machine Learning in Bioinformatics PIEAS Biomedical Informatics Research Lab

45

The case of the exploding (or vanishing) gradients

Effect of gradient multiplication

=

Avi; = ax;f'(v] x)ijk <tk f< wirf (v} x))) (Z wjrf (v] x) exploding

|

ideal

9
depth

Glorot & Bengio 2010 “Understanding the difficulty of training deep feedforward neural networks”.

CIS 622: Machine Learning in Bioinformatics PIEAS Biomedical Informatics Research Lab 46

Width vs. Depth

An MLP with a single hidden layer is sufficient to represent any function
— But the layer may be infeasibly large
— May fail to learn and generalize correctly

Using a deeper model can reduce the number of units required to represent
the desired function and can reduce the amount of generalization error

A function that could be expressed with O(n) neurons on a network of depth k
required at least O(2V") and O((n -1)¥) neurons on a two-layer neural network:
Delalleau and Bengio (2011)

Functions representable with a deep rectifier net can require an exponential
number of hidden units with a shallow (one hidden layer) network: Montufar
(2014)

For a shallow network, the representation power can only grow polynomially
with respect to the number of neurons, but for deep architecture, the

representation can grow exponentially with respect to the number of neurons:

Bianchini and Scarselli (2014)

Depth of a neural network is exponentially more valuable than the width of a
neural network, for a standard MLP with any popular activation functions:
Eldan and Shamir (2015)

CIS 622: Machine Learning in Bioinformatics PIEAS Biomedical Informatics Research Lab

47

Width vs. Depth

* Exponential advantage of deeper networks

Montufar (2014)

CIS 622: Machine Learning in Bioinformatics PIEAS Biomedical Informatics Research Lab 48

Width vs. Depth

 Empirical results for some data showed that
depth increases generalization performance in
a variety of applications

Test accuracy (percent)

92.0 |] | | 1 | |
3 4) 6 T 8 9 10 11

Figure 6.6: Empirical results showing that deeper networks generalize better when used
to transcribe multi-digit numbers from photographs of addresses. Data from

(). The test set accuracy consistently increases with increasing depth. See
figure 6.7 for a control experiment demonstrating that other increases to the model size
do not vield the same effect.

CIS 622: Machine Learning in Bioinformatics PIEAS Biomedical Informatics Research Lab

49

97 | I 1 | |
= 96 e—e 3, convolutional
= YO ' L
g +—+ 3, fully connected
2 iy V¥ 11, convolutional
g o4l :
S o3t — B :
1w ™ 1
E 92 | -

01 | | | | |

0.0 0.2 0.4 0.6 0.5 1.0

108
Number of parameters x10

Figure 6.7: Deeper models tend to perform better. This is not merely because the model is
larger. This experiment from Goodfellow ef (201 1) shows that increasing the number
of parameters in layers of convolutional networks without increasing their depth is not
nearly as effective at increasing test set performance. The legend indicates the depth of
network nsed to make each curve and whether the curve represents variation in the size of
the convolutional or the fully connected layers. We observe that shallow models in this
context overfit at around 20 million parameters while deep ones can benefit from having
over 60 million. This sugeests that using a deep model expresses a useful preference over
the space of functions the model can learn. Specifically, it expresses a belief that the
function should consist of many simpler functions composed together. This could result
either in learning a representation that is composed in turn of simpler representations (e.g..
corners defined in terms of edges) or in learning a program with sequentially dependent
steps (e.g., first locate a set of objects, then segment them from each other, then recognize

them).

CIS 622: Machine Learning in Bioinformatics PIEAS Biomedical Informatics Research Lab 50

Increasing representation power with depth

/’,‘\

/ Deep \
~ ™ Boltzmann |
Machine
— Deep
Y i \ Belief 2009 /
Boltzmann Nets
B Machine \\ 2006 /
2 985 ~—
8 / Restricted \\
- Boltzmann)/
O Machine
& /—\ N 1986 /
- \
8 Hopfield
O J\ Network)
| -
1982
o /
2 / Self /
(Organizing
Map
1980 /
>

Computation Complexity

CIS 622: Machine Learning in Bioinformatics

PIEAS Biomedical Informatics Research Lab

51

Issues with Depth

* Generalization
— Large networks are large capacity machines

— Remember: Learning requires generalization and goes beyond mere
minimization of an objective function!

* Failure to Optimize
— Random initialization leads to the network being stuck in poor solutions

— Deeper networks are more prone to vanishing/exploding gradients and
optimization failures
* “Greedy Layer-Wise Training of Deep Networks” by Bengio et al., 2006
— Uses unsupervised pre-training to initialize the weights of a network such that the optimization becomes easier

* Since 2010, this has been replaced with Drop-out and batch-normalization schemes

which improve the optimization performance
— Rectified Linear Units get rid of the vanishing gradient problem
— Drop-out improves generalization
— Batch Normalization accelerates deep learning and improves generalization

» Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift by loffe
and Segedy, 2015.

* Large scale optimization is tricky in deep learning
— Computationally demanding

— Requires efficient methods
e Stochastic gradient and sub-gradient methods

CIS 622: Machine Learning in Bioinformatics PIEAS Biomedical Informatics Research Lab 52

Issues with depth

Handling variety of neural network architectures

How can we develop a framework of learning in which we can add
layers, have a large diversity of layer connectivity, change objective
functions and losses, layer connectivity, regularization, etc.?

And still solve the optimization problem in an efficient manner!

Symbolic Computation and Automatic Differentiation

GPU

* Efficient matrix operations
e Higher bandwidth

CIS 622: Machine Learning in Bioinformatics

PIEAS Biomedical Informatics Research Lab

53

A mostly complete chart of

o NEUral Networks ...
AS/AN

O

AR
O

< Perceptron (P) Feed Forward (FF) Radial Basis Network (RBF)
() Hidden Cell . . - K3 ’,“'
- - SQvAW)
© Probablistic Hidden Cell - - -
. Spiking Hidden Cell
. Output Cell

‘ Match Input Output Cell

Input Cell ©2016 Fjodor van Veen - asimovinstitute.org
o http://www.asimovinstitute.org/neural-network-zoo/ -

—

/\ Noisy Input Cell

. Recurrent Cell

© wemory ceu Auto Encoder (AE) ~ Variational AE (VAE) Denoising AE (DAE) Sparse AE (SAE)
. Different Memory Cell

"~ Kernel '
I&{ A X

KX XX
Oomc

W

-

A\

-

Convolution or Pool

£

>

CIS 622: Machine Learning in Bioinformatics PIEAS Biomedical Informatics Research Lab 54

O Backfed Input Cell

~ Input Cell

g Noisy Input Cell

@ Hidden Cell

© Probablistic Hidden Cell
@ spiking Hidden Cell

. Output Cell

. Match Input Output Cell
. Recurrent Cell

. Memory Cell

. Different Memory Cell

" Kernel

6 Convolution or Pool

Markov Chain (MC) Hopfield Network (HN) Boltzmann Machine (BM) Restricted BM (RBM) Deep Belief Network (DBN)

/3

Deep Convolutional Network (DCN) Deconvolutional Network (DN) Deep Convolutional Inverse Graphics Network (DCIGN)

) @

) @

)

| XX XX

(
é
X
f
N

Generative Adversarial Network (GAN) Liquid State Machine (LSM) Extreme Learning Machine (ELM) Echo State Network (ESN)

.9 9.9
SRR RN NS

9,
WAWAWAWAWE

Deep Residual Network (DRN) Kohonen Network (KN) Support Vector Machine (SVM) Neural Turing Machine (NTM)

— —
o
o
@ -

Making deeper neural networks practical

* Optimization

* Handling vanishing (or exploding) gradients
— Pre-training (old!)
— Drop-out
— Batch Normalization

 Computational challenges

— Use of computational graphs for automatic
differentiation of neural networks

* Allows for different types of architectures
— Using GPU parallelization

CIS 622: Machine Learning in Bioinformatics PIEAS Biomedical Informatics Research Lab

56

Optimization Methods
* Gradient Descent: Go down! 0=0—n-VeJ(0)
e Stochastic Gradient Descent 6=0—n-VyJ(0z";y")
« Mini-batch Gradient Descent 0 =0 —n-VoJ(0; x4y n))
 SGD with momentum: accelerate if
going downhill for a long time

Y — SGD

— Momentum [

* Nesterov momentum: acceleratebut =——— = J§ w NAG -
not indefinitely | — Adagrad
Adadelta

 Adagrad: Adaptive Learning Rate by
accumulating past gradients —

« AdaDelta/RMSProp: Adaptive Learning| ——
rate but does not accumulate all past
gradients

Rmsprop

 Adam: Adaptive learning rate with
momentum

http://sebastianruder.com/optimizing-gradient-descent/ , https://arxiv.org/abs/1609.04747

CIS 622: Machine Learning in Bioinformatics PIEAS Biomedical Informatics Research Lab 57

http://sebastianruder.com/optimizing-gradient-descent/
https://arxiv.org/abs/1609.04747

Optimization Methods

e Sparse data
— Adaptive Learning rate

* RMSProp, AdaDelta and Adam are very similar
— Do well in general
— Adam slightly outperforms RMSProp and is a good choice

* Parallelizing and distributing SGD

— TensorFlow uses computational graph distribution

— Other parallel schemes include: HogWild! Delayed SGD,
etc.

CIS 622: Machine Learning in Bioinformatics PIEAS Biomedical Informatics Research Lab

58

Understanding Drop-out

* “Dropout: A Simple Way to Prevent Neural Networks from
Overfitting” by Srivastava et al., 2014.

— Randomly drop units (along with their connections) from the neural
network during training

— Average weights across all “thinned” networks

— Replaces explicit regularization and produces faster learning
— Drop-out layer in keras!

‘
»

E\
%

N/
N

()
7\

</
1A
2
&
R
Q
g4

7
Y

»7

. X/
2@

»

W
"‘.
.,.\\

(RN
o®

(a) Standard Neural Net

Dropout Neural Net Model. Left: A standard neural net with 2 hidden layers. Right:

An example of a thinned net produced by applying dropout to the network on the left.
Crossed units have been dropped.

CIS 622: Machine Learning in Bioinformatics PIEAS Biomedical Informatics Research Lab

Effect of Dropout

6.1.1 MNIST
Method Unit Architecture Error
Type %

Standard Neural Net (Simard et al., 2003) Logistic 2 layers, 800 units 1.60
SVM Gaussian kernel NA NA 1.40
Dropout NN Logistic 3 layers, 1024 units 1.35
Dropout NN ReLU 3 layers, 1024 units 1.25
Dropout NN + max-norm constraint ReLU 3 layers, 1024 units 1.06
Dropout NN + max-norm constraint ReLU 3 layers, 2048 units 1.04
Dropout NN + max-norm constraint ReLU 2 layers, 4096 units 1.01
Dropout NN + max-norm constraint ReLLU 2 layers, 8192 units 0.95
Dropout NN 4+ max-norm constraint (Goodfellow Masxout 2 layers, ('5 x 240) 0.94
et al., 2013) units

DBN + finetuning (Hinton and Salakhutdinov, 2006) Logistic 500-500-2000 1.18
DBM + finetuning (Salakhutdinov and Hinton, 2009) Logistic 500-500-2000 0.96
DBN + dropout finetuning Logistic 500-500-2000 0.92
DBM + dropout finetuning Logistic 500-500-2000 0.79

CIS 622: Machine Learning in Bioinformatics PIEAS Biomedical Informatics Research Lab 60

Understanding Batch-Normalization

* Re-normalization of weight parameters after
every mini-batch to zero-norm and unit-variance
with backpropagation

— Note: This is not re-initialization to random values,
rather the current weights are updated

* Reduces the effects of weight normalization and
enforces regularization leading to faster learning

— More effective than drop-out
— No need for “pre-training”

 Available in Keras!

Sergey loffe and Christian Szegedy. Batch Normalization: Accelerating Deep Network Training
by Reducing Internal Covariate Shift. arXiv preprint arXiv:1502.03167v3, 2015.

CIS 622: Machine Learning in Bioinformatics PIEAS Biomedical Informatics Research Lab 61

dCCuracy

0.8

Effect of Batch Normalization

best of w/ BN w/o BN

- = = Inception
----- BN-Baseline
veroas BN=x5

BN-x30

-+ 4+ BN-x5-Sigmoid

4 Steps to match Inception

10M 15M 20M 25M som Ler.

Figure taken from [S. loffe & C. Szegedy]

CIS 622: Machine Learning in Bioinformatics PIEAS Biomedical Informatics Research Lab

62

Computational Graphs

 Making a generic package for multi-layer
neural networks requires

— An abstract way of representing various
computational operations involved in the network

— Distributed Evaluations
— Calculation of gradients

 Computational Graphs allow us to do all this!

CIS 622: Machine Learning in Bioinformatics PIEAS Biomedical Informatics Research Lab 63

Computational Graphs

 CGs are an easy way to think about
mathematical expressions

* Formalizes the idea of neural networks and
generalizes backpropagation and makes it
computationally efficient

* The “compile” in keras builds a Computational
Graph for the Network (can take time!)

CIS 622: Machine Learning in Bioinformatics PIEAS Biomedical Informatics Research Lab 64

Example
dz _ dzdy dx
e Differentiation via the z=f (f(f(w))) dw dy dx dw
chain rule can be
represented as the
computational graph

* Symbolic derivatives
e Parallelization

— Compute independent
components in parallel

* Avoiding re-

computation
— Re-use symbolic Figure 6.10: An example of the symbol-to-symbol approach to computing derivatives. In
derivatives this approach. the back-propagation algorithm does not need to ever access any actual

specific numeric values. Instead. it adds nodes to a computational graph describing how
— Store previous values to compute these derivatives. A generic graph evaluation engine can later compute the
derivatives for any specific numeric values. (Left)In this example, we begin with a graph

representing z = f(f(f(w))). (Right)We run the back-propagation algorithm. instructing
. . . 1= .
it to construct the graph for the expression corresponding to 5=. In this example, we do

not explain how the back-propagation algorithm works. The purpose is only to illustrate
what the desired result is: a computational graph with a symbolic description of the
derivative.

CIS 622: Machine Learning in Bioinformatics PIEAS Biomedical Informatics Research Lab 65

The magic of computational graphs

oy
e e

®/' - / '\/'

Oe Ode
a0 e !

oe de Oe

l.i Lr3 o
0 od 86_
de e ad

reverse-mode differentiation

. 7€ =3

)
by
If
—
S

CIS 622: Machine Learning in Bioinformatics PIEAS Biomedical Informatics Research Lab 66

http://colah.github.io/posts/2015-08-Backprop/

The magic of computational graphs

Forward-mode differentiation gave us the derivative of
our output with respect to a single input, but reverse-
mode differentiation gives us all of them.

For this graph, that’s only a factor of two speed up, but
imagine a function with a million inputs and one
output.

Forward-mode differentiation would require us to go
through the graph a million times to get the
derivatives.

Reverse-mode differentiation can get them all in one
fell swoop!

A speed up of a factor of a million is pretty nice!

CIS 622: Machine Learning in Bioinformatics PIEAS Biomedical Informatics Research Lab

67

Practical Example

J = e+ A Z(H*l) (n*)

1,7 i,

CIS 622: Machine Learning in Bioinformatics PIEAS Biomedical Informatics Research Lab 68

Origins of Deep Learning

Year Contributer Contribution
introduced Associationism, started the history of human’s

300 BC Aristotle attempt to understand brain.
: introduced Neural Groupings as the earliest models of
1873 Alexander Bain neural network, inspired Hebbian Learning Rule.
1943 MecCulloch & Pitts introduced MCP Model, which is considered as the

ancestor of Artificial Neural Model.

considered as the father of neural networks, introduced
1949 Donald Hebb Hebbian Learning Rule, which lays the foundation of
modern neural network.
introduced the first perceptron, which highly resembles

1958 Frank Rosenblatt

modern perceptron.
1974 Paul Werbos introduced Backpropagation
1980 Teuvo Kohonen introduced Self Organizing Map

introduced Neocogitron, which inspired Convolutional
Neural Network
1982 John Hopfield introduced Hopfield Network
1985 Hilton & Sejnowski introduced Boltzmann Machine

introduced Harmonium, which is later known as Restricted
Paul Smolensky

Kunihiko Fukushima

1986 Boltzmann Machine
Michael I. Jordan defined and introduced Recurrent Neural Network
1990 Yann LeCun introducec_i LeNet? showed the possibility of deep neural
networks in practice
1997 Schuster & Paliwal introduced Bidirectional Recurrent Neural Network
Hochreiter & introduced LSTM, solved the problem of vanishing

69

Sehmidbinher oradient in rectirrent neniral networl-o

Origins of Deep Learning

introduced Deep Belief Networks, also introduced
2006 Geoffrey Hinton layer-wise pretraining technique, opened current deep
learning era.

Salakhutdinov &

2009 _ introduced Deep Boltzmann Machines
Hinton

9012 Geoffrey Hinton introduced Dropout, an efficient way of training neural
networks
introduced Variational Autoencoder (VAE), which may

2013 Kingma & Welling bridge the field of deep learning and the field of Bayesian
probabilistic graphic models.

2014 [an J. Goodfellow introduced Generative Adversarial Network.

2015 loffe & Szegedy introduced Batch Normalization

Wang, Haohan, and Bhiksha Raj. “On the Origin of Deep Learning.” arXiv:1702.07800 [Cs, Stat], February 24, 2017.
http://arxiv.org/abs/1702.07800.

CIS 622: Machine Learning in Bioinformatics PIEAS Biomedical Informatics Research Lab 70

Modern Practices

 Deep Convolutional Neural Networks
* Residual Networks

* Generative Models
— Auto-encoders: VAE, NAE
— Generative Adversarial Networks
— Recurrent Neural Networks
* Recurrent Models
— RNN
— LSTM
* Transfer Learning

e Zero and One-shot learning

CIS 622: Machine Learning in Bioinformatics PIEAS Biomedical Informatics Research Lab 71

Spectrum of Depth

— 5 layers: easy

» >10 layers: initialization, Batch Normalization

—» >30 layers: skip connections

—» >100 layers: identity skip connections
>1000 layers: ?

shallower deeper

CIS 622: Machine Learning in Bioinformatics PIEAS Biomedical Informatics Research Lab 72

DCN: Deep Convolutional Networks

e A feed-forward network inspired from visual
cortex

e Used for image recognition
* Objective

— Find a set of filters which, when convolved with

image, lead to the solution of the desired image
recognition task

e |nvariant

* Hierarchical

— Increasing feature complexity
— Increasing “Globality”

CIS 622: Machine Learning in Bioinformatics PIEAS Biomedical Informatics Research Lab 73

Basics

* The convolution operation

CIS 622: Machine Learning in Bioinformatics PIEAS Biomedical Informatics Research Lab 74

ol oo ,
* o 9 o —
0o 0 0

(a) Identity kernel

‘M-

(c) Blur kernel (d) Sharpen kernel
0 0 o

* * o 6 o
0 0 o

(e) Lighten kernel (f) Darken kernel

(g) Random kernel 1 (h) Random kernel 2

75

shallower

- classifier - “bus”?

pixels

- edges - classifier - “bus”?

SIFT/HOG

A
- o = deeper

= edges = histogram = classifier = “bus”?

- edges - histogram - s:a.:'nseeacr:)sge - classifier - “bus”?

- ‘ " bu Su .r'

-) - mp bus”?

CIS 622: Machine Learning in Bioinformatics PIEAS Biomedical Informatics Research Lab 76

Structure

Increasing “globality”

— Input - Convolution - Single depth slice
Non-linearity - Sub- o] : - : s B
sampling ... = Fully a1 0 s s
Connected Layer (for ENEY =
classification) Y

4

N = o

C3:f. maps 16@10x10
C1: feature maps S4:f. maps 16@5x5

INPUT
6@28x28
S2: f. maps CS: layer F6: layer QUTPUT
r 120 10
|

32x32
6@14x14 P
Full conrl»ection | Gaussian connections

Convolutions Subsampling Convolutions Subsampling Full connection

CIS 622: Machine Learning in Bioinformatics PIEAS Biomedical Informatics Research Lab 77

import numpy

from keras.datasets import cifar1l0

from keras.models import Sequential

from keras.layers import Dense

from keras.layers import Dropout

from keras.layers import Flatten

from keras.constraints import maxnorm

from keras.optimizers import SGD

from keras.layers.convolutional import Conv2D
from keras.layers.convolutional import MaxPooling2D
from keras.utils import np_utils

from keras import backend as K
K.set_image_dim_ordering('th')

fix random seed for reproducibility

seed =7

numpy.random.seed(seed)

load data and preprocess it

(X_train, y_train), (X_test, y_test) = cifar10.load_data()

X_train = X_train.astype('float32')

X_test = X_test.astype('float32')

X_train = X_train / 255.0

X_test = X_test / 255.0

y_train = np_utils.to_categorical(y_train)

y_test = np_utils.to_categorical(y_test)

num_classes = y_test.shape[1]
http://machinelearningmastery.com/object-recognition-convolutional-neural-networks-keras-deep-learning-library/

CIS 622: Machine Learning in Bioinformatics PIEAS Biomedical Informatics Research Lab 78

http://machinelearningmastery.com/object-recognition-convolutional-neural-networks-keras-deep-learning-library/

Create the model : Feature Extraction

model = Sequential()

model.add(Conv2D(32, (3, 3), input_shape=(3, 32, 32), padding='same’, activation="relu’,
kernel_constraint=maxnorm(3)))

model.add(Dropout(0.2))

model.add(Conv2D(32, (3, 3), activation="relu’, padding='same’, kernel_constraint=maxnorm(3)))
model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(Flatten())

Create the model : MLP Classification

model.add(Dense(512, activation='relu’, kernel_constraint=maxnorm(3)))
model.add(Dropout(0.5))

model.add(Dense(num_classes, activation='softmax'))

Compile model

epochs = 25

Irate = 0.01

decay = Irate/epochs

sgd = SGD(Ir=Irate, momentum=0.9, decay=decay, nesterov=False)
model.compile(loss='categorical_crossentropy', optimizer=sgd, metrics=['accuracy'])
print(model.summary())

Fit the model

model.fit(X_train, y_train, validation_data=(X_test, y_test), epochs=epochs, batch_size=32)
Final evaluation of the model

scores = model.evaluate(X_test, y_test, verbose=0)

orint("Accuracy: %.2f%%" % (scores[1]*100

CIS 622: Machine Learning in Bioinformatics PIEAS Biomedical Informatics Research Lab

79

Layer (type) Output Shape Param #

conv2d 1 (Conv2D) (None, 32, 32, 32) 896

dropout_1 (Dropout) (None, 32, 32, 32) 0

conv2d_2 (Conv2D) (None, 32, 32, 32) 9248

max_pooling2d_1 (MaxPooling2 (None, 32, 16, 16) 0

flatten_1 (Flatten) (None, 8192) 0
dense_1 (Dense) (None, 512) 4194816
dropout_2 (Dropout) (None, 512) 0
dense_2 (Dense) (None, 10) 5130

Total params: 4,210,090.0
Trainable params: 4,210,090.0
Non-trainable params: 0.0

CIS 622: Machine Learning in Bioinformatics PIEAS Biomedical Informatics Research Lab 80

Famous CNN

LeNet (Le Cunn 1990, 1998)

Sampling Conv Sampling

5x5 5x5 5x5

MLP 800x500
RBF 500x10

 AlexNet

Conv Samplmg Conv Sampling
11)(11 » » 5x5 » 3x3 »
256

256

¥

« Sampllng ‘ Comr « Cunv
355

256

CIS 622: Machine Learning in Bioinformatics PIEAS Biomedical Informatics Research Lab 81

Famous CNN

* VGGI9
* Inception

* XCeption

CIS 622: Machine Learning in Bioinformatics PIEAS Biomedical Informatics Research Lab 82

Important Concepts

* Differences from fully connected nets
— 3D volume of neurons
— Local connectivity
— Shared weights

* Hyper-parameter
— Number of filters
— Filter shape (receptive field)
— Pooling type and shape

— Regularization

* Dropout
Data Augmentation
Early Stopping
Norm constraints
L1/L2 regularization

CIS 622: Machine Learning in Bioinformatics PIEAS Biomedical Informatics Research Lab 83

Reading

* Easy Reading: Machine Learning is Fun! Part 3:
Deep Learning and Convolutional Neural
Networks

— https://medium.com/@ageitgey/machine-learning-is-fun-part-3-deep-learning-and-
convolutional-neural-networks-f40359318721

* Required reading

— ImageNet Classification with Deep Convolutional
Neural Networks

e Results of various methods

— http://rodrigob.github.io/are we there yet/build/classification datasets results.html

CIS 622: Machine Learning in Bioinformatics PIEAS Biomedical Informatics Research Lab 84

https://medium.com/@ageitgey/machine-learning-is-fun-part-3-deep-learning-and-convolutional-neural-networks-f40359318721
http://rodrigob.github.io/are_we_there_yet/build/classification_datasets_results.html

Deep Nets vs.

* “latest DNNs rival the
representational
performance of IT cortex on
this visual object
recognition task”

Classification of 10 classes
of objects

Implanted electrodes in the
Inferior Temporal (IT) cortex
and cortical visual areas
(V1-V4) in primates with a
linear classifier on the
measurements

Human Classification

Convolutional Deep Neural
Networks

Monkey vs. Humans

A

0.8- I -
0.7

2 0.5 _I_

8

§ 0.4

E

§ 0.31

g

~ 0.21
0.1
0o) —mim I i- 2 b

Similarity to IT dissimilarity matrix

o 1 B * g " &
\!,\‘\\ \\’L\\ %\1\?‘ o N Pl r;,})x o K‘ < 2 R\ (P‘&e \.\v\?@
PR R P A SN
SRR N et
oF . (Q‘ﬁ < (_,0("
<€ N

animals
cars
chairs
faces
fruits
planes

tables

Cadieu CF, Hong H, Yamins DLK, Pinto N, Ardila D, et al. (2014) Deep Neural Networks Rival the Representation of Primate IT Cortex for Core
Visual Object Recognition. PLoS Comput Biol 10(12): e1003963. doi:10.1371/journal.pcbi.1003963

CIS 622: Machine Learning in Bioinformatics

PIEAS Biomedical Informatics Research Lab 85

Deconvolution Network

What is each layer learning? :
. . . . Layer Above
— Which filter activation you want Reconstruction Gk Fogled aps
I
to visualize T f Max Pooli
) Max Unpooling Oﬁw A reeine
— Pass the image forward
— Zero out all filter activations in dnpooied Maps Hactified heattimags
the last layer except the one you Rectified Linear ﬁ Rectified Linear
want to visualize e i L e
— Now go back to the image space Rectified Unpooled Maps Feature Maps
but through the deconv net Convolutional

Filtering {F'}

(—

Convolutional
Filtering {F}

* RelU Reconstruction Layer Below Pooled Maps

%ooled Maps

13 Pooling

* Unpool?

* Deconv (transpose the filter)

— Follow these three steps till you I
. Layer Above
reach the image layer Reconstruction %
Identify what images and what y,p06ling

parts of the image activates a @

Max Locations

. “Switches”
filter (or feature) strongly!
Unpooled Rectified N
Mag:o * Featur: Ma;s "_‘f\

CIS 622: Machine Learning in Bioinformatics PIEAS Biomedical Informatics Research Lab 86

Visalization of a CNN

* Visualizing and Understanding Convolutional Networks by Zeiler and
Fergus, ECCV 2014, Part I, LNCS 8689, pp. 818-833, 2014.

airplane ﬁ.% » .’.aé_
automoblleazh‘
bird 1B B A
= HESHNEEEs P
aeer PRI NS KRS
s [HESEHSBDRAKLE
frog E.....
horse ..mn-ﬂ'm
ship B e e

S PRVt R

Visualization: https://voutu.be/ghEmQSxT6tw

truck

CIS 622: Machine Learning in Bioinformatics PIEAS Biomedical Informatics Research Lab 87

https://youtu.be/ghEmQSxT6tw

on T

2l =

. M = ~
a

| I
/econstruction of image patches top 9 image patches that cause

from that unit maximal activation in layer 2 unit
(indicates aspect of patches

which unit is sensitive to)

CIS 622: Machine Learning in Bioinformatics PIEAS Biomedical Informatics Research Lab

88

CIS 622: Machine Learning in Bioinformatics PIEAS Biomedical Informatics Research Lab 89

CIS 622: Machine Learning in Bioinformatics PIEAS Biomedical Informatics Research Lab

Fine Tuning/Transfer Learning

A form of transfer learning

— Use a pre-trained neural network for another
classification task

* Modify the weights of the final layers
Trained image classification models for Keras

— https://github.com/fchollet/deep-learning-models

Transfer Learning: Recognition of traffic light

— (https://medium.freecodecamp.com/recognizing-traffic-lights-with-deep-learning-
23dae23287cc)

Building powerful image classification models
using very little data

— https://blog.keras.io/building-powerful-image-classification-models-using-very-little-data.html

CIS 622: Machine Learning in Bioinformatics PIEAS Biomedical Informatics Research Lab 91

https://github.com/fchollet/deep-learning-models
https://medium.freecodecamp.com/recognizing-traffic-lights-with-deep-learning-23dae23287cc
https://blog.keras.io/building-powerful-image-classification-models-using-very-little-data.html

What’s wrong with Convolutional Neural Networks?

Watch the talk by Geoff Hinton on the subject:

— https://www.youtube.com/watch?v=rTawFwUvnLE

Also watch: The failures of deep learning
— https://www.youtube.com/watch?v=jWVZnkTfB3c

Beyond DCNN

— Gabor Convolutional Networks
e https://arxiv.org/abs/1705.01450v2

— Convolutional Sequence to Sequence Learning
* https://arxiv.org/abs/1705.03122v2

— Do Deep Convolutional Nets Really Need to be Deep and
Convolutional

* https://arxiv.org/abs/1603.05691v4
— Picasso: A Neural Network Visualizer
* https://arxiv.org/abs/1705.05627v1

CIS 622: Machine Learning in Bioinformatics PIEAS Biomedical Informatics Research Lab

92

https://www.youtube.com/watch?v=rTawFwUvnLE
https://www.youtube.com/watch?v=jWVZnkTfB3c
https://arxiv.org/abs/1705.01450v2
https://arxiv.org/abs/1705.03122v2
https://arxiv.org/abs/1603.05691v4
https://arxiv.org/abs/1705.05627v1

Increasing Depth (10-100 Layers)

 What if we keep on stacking layers?

— 56-layer net has higher training error and test
error than 20-layer net

CIFAR-10
train error (%) test error (%)
20p ¢
56-layer
56-layer
10 1
20-layer
20-layer
% [2 4 5 6 % [2 4 5 6

3 3
iter. (1e4) iter. (1e4)

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Deep Residual Learning for
Image Recognition”. CVPR 2016

CIS 622: Machine Learning in Bioinformatics PIEAS Biomedical Informatics Research Lab 93

Simply Stacking Layers?

 “Overly deep” plain nets have higher training error

A general phenomenon, observed in many datasets

* Reasons
— Optimization failure
CIFAR-10
.._ . _||I -
/ 56-layer
- 44-layer
o ;
_ = -layer
ol T 20-layer
- l_f‘._,-""_,-_ -
pla_i_n_] e . eresersani T aans
plain-3]
Pt solid: test/val
uﬂ 1 3 4 _": (]

dashed:train

CIS 622: Machine Learning in Bioinformatics

ImageNet-1000
S0p-
=
B a0 34-layer
1) S
plain-18
—plain-34 18-layer
2[‘[] 10 20 30 20 0

iter. (1ed)

PIEAS Biomedical Informatics Research Lab 94

Residual Learning

Plain Network
!
weight layer
any two
stacked layers l relu F(x)

weight layer

|
H() l relu

H(x) is any desired mapping H(x) is any

H(x)=F(x)+x

Residual Network

weight layer
l relu identity
weight layer X

desired mapping

Hope the 2 weight layers fit H(x) Hope the 2 weight layers fit F(x)

The network learns fluctuations F(x)=H(x)-x

Easier!
Kaiming He, Xiangyu Zhang, Shaoging Ren, & Jian Sun. “Deep Residual

CIS 622: Machine Learning in Bioinformatics

Learning for Image Recognition”. CVPR 2016.

PIEAS Biomedical Informatics Research Lab

95

ResNet Models

* No Dropout

 With Batch
Normalization

* Use Data
Augmentation

CIS 622: Machine Learning in

plain net

7x7 conv, 64, /2

I

7x7 conv, 64, /2 |

pool, /2 poal, /2
| 3x3 conv, 64 | | 3x3 conv, 64 |
¥ ¥
[3aconves | | 3x3conv, 64
4
3x3conv, 64| [33conv,ea |
A1 ¥
I 3x3 conv, 64 | | 3x3 conv, 64 J
A 4
[3aconv,6s | [3x3conv,64
¥ ¥
[33conv,64 | | 3x3conv,64
Yy 0 Y
[3x3conv,128,/2 | | 3x3conv,128,2 | T
h J ¥ Y
[3x3conv, 128] [3x3conv, 128 | .

¥

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x%3 conv, 128

3x3 conv, 128

¥

3x3 conv, 128

3x3 conv,

2

3x3 conv, 128

3x3 conv,

3x3 conv, 256, /2

¥

3x3 conv, 256

3x3 conv, 256

I 3x3 conv, 256 | | 3x3 conv, 256 J
I 3x3 conv, 256 | I 3x3 conv, 256
| 3x3 conv, 256 | | 3x3 conv, 256

¥

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

I 3x3 conv, 256 | | 3x3 conv, 256
I 3x3 conv, 256 I I 3x3 conv, 256
¥

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

¥

3x3 conv, 512, /2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512]

3x3 conv, 512

A
3x3 conv, 512

3x3 conv, 512

33cony, 512 |

¥ h J
[3x3conv,512 | [3x3conv, 512
v
avg pool avg pool
[fc 1000] [fc 1000]

ResNet

CIFAR-10 plain nets

CIFAR-10 ResNets
20 200§
ResNet-20
ResNet-32
56-layer — ReaNetd4
~— ResNet-56
44-layer — Reshet 114 |
g 32-layer £ 20-layer
= 10 S10f- -
2 20-layer £ 32-layer
44-layer
31 piain-é 3 '»l'! § 56'|ayer
plain-3] YN . b
_plain-t V. solid: test L 110-layer
plain- , , . , . e
% 1 2 3 4 5 6 dashed: train % 1 2 3 4 5 6
iter. (le4) iter. (1ed)
ImageNet plain nets ImageNet ResNets
60F-.'......'..' o ..:.. ---------
= 7 S S S
% a0l 34-layer sl e 18-layer
5
i — ey —
- solid: tes Noeme A s
lain-18 . ResNet-18 T
_21:::_34 dashed: train 18-'3?‘9[‘ — ResNet.34 v 34-'3?9['
2 10 20 30 40 50 2']0 10 0 30 40 50
iter. (led) iter. {led)
°

Deep ResNets can be trained without difficulties

Deeper ResNets have lower training error, and also lower test error

CIS 622: Machine Learning in Bioinformatics

PIEAS Biomedical Informatics Research Lab 97

* Deeper ResNets have lower error 7.4
this model has .

lower time complexity
than VGG-16/19 6.7

4

5.7

=]

L

ResNet-152 ResNet-101 ResNet-50 ResNet-34
10-crop testing, top-5 val error (%)

CIS 622: Machine Learning in Bioinformatics PIEAS Biomedical Informatics Research Lab 98

ImageNet experiments 28.2
[152 Iayers] '

\ 11.7
l 22 Iayers ‘ 19 Iayers

ILSVRC'15 ILSVRC'14 ILSVRC'14 ILSVRC'13 ILSVRC'12 ILSVRC'11 ILSVRC'10
ResNet GoogleNet VGG AlexNet

"I|.

3.57

ImageNet Classification top-5 error (%)

CIS 622: Machine Learning in Bioinformatics PIEAS Biomedical Informatics Research Lab 99

ResNet Results

* 1st places in all five main tracks
e ImageNet Classification: “Ultra-deep” 152-
layer nets
e ImageNet Detection: 16% better than 2nd
e [mageNet Localization: 27% better than 2nd
e COCO Detection: 11% better than 2nd
e COCO Segmentation: 12% better than 2nd

CIS 622: Machine Learning in Bioinformatics PIEAS Biomedical Informatics Research Lab 100

Residual Networks

* Required Reading

e Kaiming He, Xiangyu Zhang, Shaoging Ren, & Jian Sun.
“Deep Residual Learning for Image Recognition”. CVPR
2016.

 Many third-party implementations

— list in https://github.com/KaimingHe/deep-
residual-networks

— Torch ResNet:
https://github.com/facebook/fb.resnet.torch

Kaiming He, Xiangyu Zhang, Shaoging Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. CVPR 2016.
Kaiming He, Xiangyu Zhang, Shaoging Ren, & Jian Sun. “Identity Mappings in Deep Residual Networks”. arXiv 2016.

CIS 622: Machine Learning in Bioinformatics PIEAS Biomedical Informatics Research Lab

101

https://github.com/KaimingHe/deep-residual-networks
https://github.com/facebook/fb.resnet.torch

Beyond ResNets

e Residual Networks Behave Like Ensembles of
Relatively Shallow Networks

— https://arxiv.org/abs/1605.06431v2

 Fractal Networks
— https://arxiv.org/abs/1605.07648

* Deep Stochastic Networks
— https://arxiv.org/abs/1603.09382

CIS 622: Machine Learning in Bioinformatics PIEAS Biomedical Informatics Research Lab 102

https://arxiv.org/abs/1605.06431v2
https://arxiv.org/abs/1605.07648
https://arxiv.org/abs/1603.09382

Moving towards Generative Models

* Uptil now our models have been
discriminatory
— Discriminate between classes

* Generative Models
— Models that can be used to generate examples!

CIS 622: Machine Learning in Bioinformatics PIEAS Biomedical Informatics Research Lab 103

Generative Models

Tréining examples Model samples

Figure 2: Some generative models are able to generate samples from the model distri-

bution. In this illustration of the process, we show samples from the ImageNet (Deng

et al., 2009} |2010; [Russakovsky et al., 2014) dataset. An ideal generative model would
be able to train on examples as shown on the left and then create more examples from
the same distribution as shown on the right. At present, generative models are not yet
advanced enough to do this correctly for ImageNet, so for demonstration purposes this
figure uses actual ImageNet data to illustrate what an ideal generative model would
produce.

NIPS 2016 Tutorial: Generative Adversarial Networks, lan Goodfellow , https://arxiv.org/abs/1701.00160
CIS 622: Machine Learning in Bioinformatics PIEAS Biomedical Informatics Research Lab

104

https://arxiv.org/abs/1701.00160

Generative Adversarial Networks

e Also known as Turing Learning

* Unsupervised Learning for generating D tries to make
realistic examples Dl s 0 bs

near 1

D(G(z)) near 0,
G tries to make

D(G(z)) near 1

e Consists of two networks

— Discriminator Network (D)
* Given a data set -

* |f an example has been chosen from the L.
L |

dataset, then D tries to output a probability
value of 1.0

* |f the example is fake, then produce 0.0
— Generator Network (G)

* Input: Random noise

* QOutput: An example resembling the
examples in the dataset

z sampled from
model

Differentiable
function G

Input noise z

* The differentiator tries to produce a value ol .
of 0.0 for examples generated from the NIPS 201_6 Tutorial: Generative
network Adversarial Networks by lan

* The objective of G is to produce images for Goodfellow, 2016
which D produces high probabilities ’

https://arxiv.org/abs/1701.00160

* Performs

Generative Adversarial Networks
https://arxiv.org/abs/1406.2661

CIS 622: Machine Learning in Bioinformatics PIEAS Biomedical Informatics Research Lab 105

https://arxiv.org/abs/1701.00160
https://arxiv.org/abs/1406.2661

GANSs Applications: Super-resolution Imaging

Figure 4:

Ledig et al.

2016

bicubic SRResNet SRGAN
(21.59dB/0.6423) (23.44dB/0.7777)

ok y .

(20.34dB/0.6562)
v ﬁ -

demonstrate excellent single-image superresolution results

that show the benefit of using a generative model trained to generate realistic samples
from a multimodal distribution. The leftmost image is an original high-resolution
image. It is then downsampled to make a low-resolution image, and different methods
are used to attempt to recover the high-resolution image. The bicubic method is
simply an interpolation method that does not use the statistics of the training set at
all. SRResNet is a neural network trained with mean squared error. SRGAN is a GAN-
based neural network that improves over SRGAN because it is able to understand that
there are multiple correct answers, rather than averaging over many answers to impose
a single best output.

CIS 622: Machine Learning in Bioinformatics PIEAS Biomedical Informatics Research Lab

106

GAN: Manipulation of images

* |Interactive Image Generation, Modification
and Warping

— https://youtu.be/9c4z6YsBGQO

CIS 622: Machine Learning in Bioinformatics PIEAS Biomedical Informatics Research Lab 107

https://youtu.be/9c4z6YsBGQ0

Image to Image Translation

Ground truth Out

Input

Labels to Street Scene

. ¥
= L .

output

) Aerial to Map v
- ‘A\ \.'ﬂ\'. \",‘{
! N 8 et
\"..\ X . |

A

input output

Figure 7: [Isola et al.] 620161) created a concept they called image to image translation,
encompassing many kinds of transformations of an image: converting a satellite photo
into a map, coverting a sketch into a photorealistic image, etc. Because many of these
conversion processes have multiple correct outputs for each input, it is necessary to
use generative modeling to train the model correctly. In particular, Isola et al.| (2016)
use a GAN. Image to image translation provides many examples of how a creative
algorithm designer can find several unanticipated uses for generative models. In the
future, presumably many more such creative uses will be found.

CIS 622: Machine Learning in Bioinformatics PIEAS Biomedical Informatics Research Lab 108

Neural Style Transfer

* Using CycleGAN
— https://github.com/junyanz/CycleGAN

Monet _ Photos

Summer _ Winter

Cezanne

Phtograph ‘ Monet an Gogh

CIS 622: Machine Learning in Bioinformatics PIEAS Biomedical Informatics Research Lab 109

https://github.com/junyanz/CycleGAN

GAN Applications

e https://lyrebird.ai/demo

* Copy anyone’s voice!

CIS 622: Machine Learning in Bioinformatics PIEAS Biomedical Informatics Research Lab 110

https://lyrebird.ai/demo

GAN Zoo

* https://deephunt.in/the-gan-z00-79597dc8c347

Cumulative number of GAN papers by year

Total number of papers
g (4] P 8 (o] - |
= = = =]

-
=]

2014 2015 2016 2017
Year

CIS 622: Machine Learning in Bioinformatics PIEAS Biomedical Informatics Research Lab 111

https://deephunt.in/the-gan-zoo-79597dc8c347

Applications

9 Cool Deep Learning Applications | Two
Minute Papers

https://youtu.be/Bui3DWs02h4?list=PLujxSBD

-JXgngqDD1n-V30pKtpbQ886x/e
https://www.youtube.com/watch?v=aKSILzbA
gJs&index=65&list=PLujxSBD-JXgngDD1n-
V30pKtpb6Q886x7/e

You said that?
https://arxiv.org/abs/1705.02966v1

CIS 622: Machine Learning in Bioinformatics PIEAS Biomedical Informatics Research Lab

112

https://youtu.be/Bui3DWs02h4?list=PLujxSBD-JXgnqDD1n-V30pKtp6Q886x7e
https://www.youtube.com/watch?v=aKSILzbAqJs&index=65&list=PLujxSBD-JXgnqDD1n-V30pKtp6Q886x7e
https://arxiv.org/abs/1705.02966v1

Predicting Temporal Data

Cycle 24 Sunspot Number (V2.0) Prediction (2016/10)

* Predicting time series
data

— Number of sunspots
— Hurricane intensity

 Mathematically,
y ht = f(xli X2, .- X¢; hlr th ht—l)

— f; should approximate true values
v, for all times in the future

. ¢ 1990 - 2005 .‘ '_ 2015
A UNGE23K§-(')IR2ION0A5 Hathaway NASA/ARC
B it [R
6 KILLED, 705 MISSING e B S

AMAGE: $90.1 BILLION
: (2010 USD)

WINDS TO 175 MPH
INTENSITY: 902 mb

*¥% HURRICANE
v+« TROPICAL STORM ; | , ! : :
*#+ TROPICAL DEPRESSION

...

i i

f]
i | i i | i i iy i
000 087190000 08°20/0000 09210000 08220000 08923/0000 082400/00 08250000 Ogm O 27/0000 113

[
a0

Using Recurrent Networks

* Given the input x, at time t and the

previous outputs, predict the current

output using a neural network A

* We can unroll the network and do
“backpropagation through time”

A

® ® ®

L

R

A

—

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

o

—

()
!
A
¢
h)

>

:

-

“The Unreasonable Effectiveness of Recurrent Neural Networks.” http://karpathy.github.io/2015/05/21/rnn-effectiveness/.

CIS 622: Machine Learning in Bioinformatics

PIEAS Biomedical Informatics Research Lab

A

114

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Applications

Spellings

Grammar

Learning to write text
Poetry

Write code

Predicting time series

CIS 622: Machine Learning in Bioinformatics

PIEAS Biomedical Informatics Research Lab

115

Issues with RNNs

 Fill in the blanks:
— The caris on the
— The clouds are in the

* The gap between relevant information and the place where it is needed is
small — easy for RNN to learn

— Bismillah and Adiba are doing their projects with Dr. Fayyaz Minhas.
The are classmates. They sit together in the lab. The project reports
are due tomorrow and must be submitted to the supervisor for review
prior to final submission. Bismillah and Adiba will submit their reports
to

* lIrrelevant information
* Gap between relevant information and the place where it is used is larger
* RNNs will have difficulty here.

* Yoshua Bengio, et al., Learning Long-Term Dependencies with
Gradient Descent is Difficult, 1994.

 Longterm dependencies are an issue
— Solution: Long-Short Term Memories (LSTM)

CIS 622: Machine Learning in Bioinformatics PIEAS Biomedical Informatics Research Lab 116

Requirements for Recurrent Neural Network

* That the system be able to store information
for an arbitrary duration.

* That the system be resistant to noise (i.e.
fluctuations of the inputs that are random or
irrelevant to predicting a correct output).

* That the system parameters be trainable (in
reasonable time).

CIS 622: Machine Learning in Bioinformatics PIEAS Biomedical Informatics Research Lab 117

RNN to LSTM

 “Hence standard RNNs fail to learn in the presence of
time lags greater than 5 — 10 discrete time steps
between relevant input events and target signals. The
vanishing error problem casts doubt on whether
standard RNNs can indeed exhibit significant practical
advantages over time window-based feedforward
networks. A recent model, “Long Short-Term Memory”
(LSTM), is not affected by this problem. LSTM can learn
to bridge minimal time lags in excess of 1000 discrete
time steps by enforcing constant error ow through
“constant error carrousels” (CECs) within special units,
called cells”

— Felix A. Gers, et al., Learning to Forget: Continual
Prediction with LSTM, 2000

CIS 622: Machine Learning in Bioinformatics PIEAS Biomedical Informatics Research Lab 118

RNN to LSTM

e “Unfortunately, the range of contextual information
that standard RNNs can access is in practice quite
limited. The problem is that the influence of a given
input on the hidden layer, and therefore on the
network output, either decays or blows up
exponentially as it cycles around the network’s
recurrent connections. This shortcoming ... referred to
in the literature as the vanishing gradient problem ...
Long Short-Term Memory (LSTM) is an RNN
architecture specifically designed to address the
vanishing gradient problem.”

— Alex Graves, et al., A Novel Connectionist System for
Unconstrained Handwriting Recognition, 2009

CIS 622: Machine Learning in Bioinformatics PIEAS Biomedical Informatics Research Lab 119

LSTM (Hochreiter & Schmidhuber 1997)

* RNNs can be represented as

1 1 1

s D @ I\ - \
—» — —
g
tan
A . A
_ J O\ J

)) &)

The repeating module in a standard RNN contains a single layer.
he = tanh((W, [he—q, x¢]))

CIS 622: Machine Learning in Bioinformatics PIEAS Biomedical Informatics Research Lab 120

LSTM

' R 4 R A)
—»>—

A]
UI

°@
>

| Lo | ItanhIIOI
I

|
&) ®) &

Neural Network Pointwise Vector
Layer Operation Transfer

Concatenate Copy

CIS 622: Machine Learning in Bioinformatics PIEAS Biomedical Informatics Research Lab 121

LSTM: Cell State

* Each cell’s output is dependent on its cell state
which is “gated”, i.e., information can be
added or removed from the state

CIS 622: Machine Learning in Bioinformatics PIEAS Biomedical Informatics Research Lab 122

Forget gate layer

Ji fi=0Wy-[hi—1,2¢] + by)

Lt

* |t looks at ht-1 and xt and outputs a number
between 0 and 1 which is multiplied with the cell
state Ct-1 in an element-wise manner

— In a language model trying to predict the next word based on all
the previous ones. In such a problem, the cell state might
include the gender of the present subject, so that the correct
pronouns can be used. When we see a new subject, we want to
forget the gender of the old subject.

CIS 622: Machine Learning in Bioinformatics PIEAS Biomedical Informatics Research Lab 123

Input Gate Layer

i =0 (Ws-[hi—1, 2] + ;)
ét :tanh(Wc-[ht_l,azt] —+ bc)

 The next step is to decide what new information we’re going to
store in the cell state. This has two parts.

— First, a sigmoid layer called the “input gate layer” decides which values
will be updated.

— Next, a tanh layer creates a vector of new candidate values, (1, that
could be added to the state. In the next step, we’ll combine these two
to create an update to the state.

* Inthe example of our language model, we’d want to add the gender
of the new subject to the cell state, to replace the old one we're
forgetting.

CIS 622: Machine Learning in Bioinformatics PIEAS Biomedical Informatics Research Lab 124

Cell State Update

Cy

Ci_q 0 &)

ﬁT ’ttr-%§ Cy = fi* Cio1 +1iy + C

* |-orget elements of the previous cell state

* Create a tentative new cell state based on the current time
cell, scale it by how much each element is to be updated
and then add it to the gated previous cell state

* |n the case of the language model, this is where we’d
actually drop the information about the old subject’s
gender and add the new information, as we decided in the

previous steps.

CIS 622: Machine Learning in Bioinformatics PIEAS Biomedical Informatics Research Lab 125

Generate Predictions

or =0 (Wy, | hi—1,2¢] + bo)
hy = o * tanh (C})

* Output is filtered version of the cell state

CIS 622: Machine Learning in Bioinformatics PIEAS Biomedical Informatics Research Lab 126

Applications

* Time Series Prediction with LSTM Recurrent Neural
Networks in Python with Keras

— http://machinelearningmastery.com/time-series-
prediction-Istm-recurrent-neural-networks-python-keras/

* Using MLP
— http://machinelearningmastery.com/time-series-
prediction-with-deep-learning-in-python-with-keras/
* Time Series Forecasting with the Long Short-Term
Memory Network in Python

— http://machinelearningmastery.com/time-series-
forecasting-long-short-term-memory-network-python/

CIS 622: Machine Learning in Bioinformatics PIEAS Biomedical Informatics Research Lab 127

http://machinelearningmastery.com/time-series-prediction-lstm-recurrent-neural-networks-python-keras/
http://machinelearningmastery.com/time-series-prediction-lstm-recurrent-neural-networks-python-keras/
http://machinelearningmastery.com/time-series-forecasting-long-short-term-memory-network-python/

Applications

https://www.quora.com/What-are-the-various-applications-
where-LSTM-networks-have-been-successfully-used

Language modeling (The tensorflow tutorial on PTB is a good place
to start Recurrent Neural Networks) character and word level
LSTM’s are used

Machine Translation also known as sequence to sequence learning
(https://arxiv.org/pdf/1409.3215.pdf)

Image captioning (with and without
attention, https://arxiv.org/pdf/1411.4555v...)

Hand writing generation (http://arxiv.org/pdf/1308.0850v5...)

Image generation using attention models - my favorite
(https://arxiv.org/pdf/1502.04623...)

Question answering (http://www.aclweb.org/anthology/...)
Video to text (https://arxiv.org/pdf/1505.00487...)

CIS 622: Machine Learning in Bioinformatics PIEAS Biomedical Informatics Research Lab

128

https://www.quora.com/What-are-the-various-applications-where-LSTM-networks-have-been-successfully-used
https://www.tensorflow.org/versions/r0.9/tutorials/recurrent/index.html
https://arxiv.org/pdf/1409.3215.pdf
https://arxiv.org/pdf/1411.4555v2.pdf
http://arxiv.org/pdf/1308.0850v5.pdf
https://arxiv.org/pdf/1502.04623v2.pdf
http://www.aclweb.org/anthology/P15-2116
https://arxiv.org/pdf/1505.00487v3.pdf

Transfer Learning

* http://sebastianruder.com/transfer-learning/

* Transfer Learning - Machine Learning's Next
Frontier

CIS 622: Machine Learning in Bioinformatics PIEAS Biomedical Informatics Research Lab 129

http://sebastianruder.com/transfer-learning/

DL Libraries

 pyTorch

— Imperative Programming
* Run, Run, Run...

— Dynamic Computing Graphs
* Graph built at run time
* Build as you go

— Good for research

* TensorFlow

— Symbolic

* Compile then run/fit

— Static Computing Graphs
* Build before you go

— Good Documentation
— Distributed Computing / Delivery
— TensorFlow.js

e CAFFE
e Theano

CIS 622: Machine Learning in Bioinformatics PIEAS Biomedical Informatics Research Lab 130

Issues

* Deep Neural Networks are Easily Fooled
— https://arxiv.org/abs/1412.1897v4

* Failures of deep learning
— https://arxiv.org/abs/1703.07950

* Requires rethinking generalization

e Steps toward deep kernel methods from
infinite neural networks

— https://arxiv.org/abs/1508.05133

Do Deep Neural Networks Really Need to be
Deep?

CIS 622: Machine Learning in Bioinformatics PIEAS Biomedical Informatics Research Lab 131

https://arxiv.org/abs/1412.1897v4
https://arxiv.org/abs/1703.07950
https://arxiv.org/abs/1508.05133

The Future

* AutoML

— DeepArchitect: Automatically Designing and Training Deep
Architectures by Renato Negrinho, Geoff Gordon

* https://github.com/negrinho/deep architect
* Unsupervised Learning
— GANs and GAN inspired models
— Stopping GAN Violence with GUNs
* https://arxiv.org/abs/1703.02528v1

— Deep Stubborn Networks

e http://www.kdnuggets.com/2017/04/deep-stubborn-networks-gan-
refinement.html

— Generative Ladder Networks

* https://medium.com/towards-data-science/a-new-kind-of-deep-
neural-networks-749bcde19108

* Applications of Deep Learning

CIS 622: Machine Learning in Bioinformatics PIEAS Biomedical Informatics Research Lab 132

https://github.com/negrinho/deep_architect
https://arxiv.org/abs/1703.02528v1
http://www.kdnuggets.com/2017/04/deep-stubborn-networks-gan-refinement.html
https://medium.com/towards-data-science/a-new-kind-of-deep-neural-networks-749bcde19108

End of Lecture

We want to make a machine that will be
proud of us.

- Danny Hillis

CIS 622: Machine Learning in Bioinformatics PIEAS Biomedical Informatics Research Lab 133

