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Primary resources

Learning using privileged information:
Similarity control and knowledge transfer
(Vapnik & lzmailov, JIMLR: 2015)

Unifying distillation and privileged information
(Lopez-paz, Bottou, Scholkopf, Vapnik, ICR:
2016)

Weak supervision and other non-standard
classification problems: A taxonomy
(Hernandez-Gonzalez and Lozano, Pattern
Recognition Letters, 2015)
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Traditional Supervised Learning

* One Instance, One Label
* Labeling is expensive or impractical

— Impossibility of observing individual examples
— Reliability of labeling

e Solutions to Data Hungry Al

— Develop methods that can work with
* Partial Labeling during training
* Use partial labeling during testing
e Can use variety of data from different sources
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Instance Label Relationship

Four possible definitions of the target function H. An ex-
ample is composed of a single (SI) or multiple (MI) in-
stances. The categorization is composed of a single (SL)
or multiple (ML) class labels.

Categorization

SL ML

SI H: X —>¢C H: X — 2¢

Example Ml | H:2% 5 ¢ H:2% L 2
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Types of Supervision

Model References Description

Full-supervision [9,24,34,43] For each example, complete class information is provided.

Unsupervision [24] No class information is provided with the examples.

Semi-supervision [5] Part of the examples are provided fully supervised. The rest are unsupervised.

Positive-unlabeled [4,10,21,32] Part of the examples are provided fully supervised, all of them with the same categorization.
The rest are unsupervised.

Candidate labels [7,13,16] For each example, a set of class labels is provided. In this set, the class label(s) that compose
the real categorization of the example are included.

Probabilistic labels [18] For each example, the probability of belonging to each class label is provided. This probability
distribution is expected to assign high probability to the real label(s).

Incomplete [3,33,42] For each example, a subset of the labels that compose its real categorization is provided (SIML
or MIML, Table 1).

Noisy labels [2,44] For each example, complete class information is provided, although its correctness is not
guaranteed.

Crowd [30,40] For each example, many different non-expert annotators provide their (noisy) categorization,

Mutual label constraints [19,20,31] For each group of examples, an explicit relationship between their class labels is provided
(e.g., all the examples have the same categorization).

Candidate labeling vectors [22] For each group of examples, a set of labeling vectors (including the real one) is provided. A
labeling vector provides a class label for each examples of a group.

Label proportions [15,25,28] For each group of examples, the proportion of examples belonging to each class label is
provided.
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Examples

 Sample Weighting to reflect confidence in
labeling or confidence in features
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Examples

* Semi-Supervised
Classification

* Transductive
Classification

— How can semi-
supervised learning be
viewed as Learning
using privileged
information?
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Figure 1: Three loss functions for unlabeled examples, from left to right (1) the Symmetric Hinge

Hi(|t]) =max(0, 1 —|¢]) , (ii) Symmetric Sigmoid S(t) = exp(—3¢7) : and (iii) Symmetric
Ramp loss. R,(|¢|) = min(1 + s, max(0,1 — |¢])). The last loss function has a plateau of
width 2|s| where s € (—1,0] 1s a tunable parameter, in this case s = —0.3.

Large Scale Transductive SVMs by Collobert et al. JMLR (2006)
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Presentations

* On classification with bags, groups and sets
(Sadaf)

* Learning from candidate label sets (Amina)
* Learning from partial labels (Dawood)
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Learning using privileged information

* LUPI

The LUPI paradigm describes a more complex model: given a set of iid triplets

(."i'..'l.;r_'fT. 5_‘;1). (;I_'fg.;'r‘z. yg). r; € X, ;i'.'f:< e X", Yi € {—1. —I—l}.
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LUPI: Examples

Example 1. Suppose that our goal is to find a rule that predicts the outcome y of
a surgery in three weeks after it, based on information x available before the surgery. In
order to find the rule in the classical paradigm, we use pairs (z;, y;) from previous patients.

However, for previous patients, there is also additional information x* about procedures
and complications during surgery. development of symptoms in one or two weeks after
surgery, and so on. Although this information is not available before surgery, it does exist
in historical data and thus can be used as privileged information in order to construct a
rule that is better than the one obtained without using that information. The issue is how
large an improvement can be achieved.

Example 2. Let our goal be to find a rule y = f(x) to classify biopsy images = into two
categories y: cancer (y = +1) and non-cancer (y = —1). Here images are in a pixel space
X, and the classification rule has to be in the same space. However, the standard diagnostic
procedure also includes a pathologist’s report x* that describes his/her impression about
the image in a high-level holistic language X* (for example, “aggressive proliferation of cells
of type A among cells of type B” etc.).

The problem is to use the pathologist’s reports «* as privileged information (along with
images r) in order to make a better classification rule for images x just in pixel space
X. (Classification by a pathologist is a time-consuming procedure, so fast decisions during
surgery should be made without consulting him or her).

Example 3. Let our goal be to predict the direction of the exchange rate of a currency
at the moment ¢. In this problem, we have observations about the exchange rates before ¢,
and we would like to predict if the rate will go up or down at the moment ¢ + A. However,
in the historical market data we also have observations about exchange rates after moment
t. Can this future-in-the-past privileged information be used for construction of a better

prediction rule?
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LUPI Formulation

Our goal 1s to we minimize the functional

¢
Tw,w,b.b") = 5 [(w,w) + 7w w')] + O lwl(w", 20) + 5L

i=1

subject to the constraints

yil(w, zi) + b] = 1 = [ya((w®, 27) — b")] .

To find the solution of this optimization problem, we approximate this non-linear opti-
mization problem with the following quadratic optimization problem: minimize the func-
tional

¢ ¢
L * ]' ¥ * ¥® ¥ £
T(w,w*,b,b") = Z{(w,w) +y(w", w")] + CY_fui((w",2)) +5) + Gl +ACH G (8)
i=1 i=1
(here A > 0 is the parameter of approximation®) subject to the constraints
yil(w,2:) +b) > 1 —yi((w*, 2%) +b") = G, i=1,...¢ (9)

the constraints

yil(w, 2))+ b))+ G >0, Yi=1,..,¢

Ly

(10)

and the constraints

F- =0 Yi=1  F (11}



LUPI Results

B SVM (space X) HELUPI B SVM (space X*)
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LUPI Knowledge Transfer

* LUPI can be viewed as a mechanism for knowledge
transfer from one space to another

— LUPI allows a student to learn from a teacher

* Teacher controls the boundary of the student from what the
student would draw otherwise

* The teach controls the concept of similarity between examples
that the student learns (Kernel Space)

One can give the following general mathematical justification for our model of knowledge
transfer. Teacher knows that the goal of Student is to construct a good rule in space X
with one of the functions from the set f(xr,a), ©r € X, o € A with capacity V. Teacher
also knows that there exists a rule of the same quality in space X* — a rule that belongs to
the set f*(x*,a"), 2 € X*, o € A" and that has a much smaller capacity VC'y«. This

knowledge can be defined by the ratio of the capacities

_ VCx
= Voo

K

The larger is k, the more knowledge Teacher can transfer to Student; also the larger is &,

the fewer evamnles will Stuident need to <elect a ooad classification rule



Distillation

* Learning one classifier from another

We focus on e-class classification, although the same 1deas apply to regression. Consider the data
d ’
{(zi,yi)} oy ~ P™(z,y), z; € R, y; € A°. (2)

Here. A€ is the set of c-dimensional probability vectors. Using (2). we are interested in learning the
representation

fo = argmin =" €y o (£(2:))) + QA £]), 3)
i=1

feF, N .

where F; is a class of functions from R? to R®. the function o : R® — A€ is the softmax operation
e*k

forall 1 < k < ¢, the function £ : A® x A° — R4 is the cross-entropy loss

o(z)g =

i
E(y, 3}) - Z Yk ]Dg ﬁk!
k=1

and €2 : R — R is an increasing function which serves as a regularizer.
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Unifying Distillation and LUPI

fo = axgmin = 3 [(1 = el o (7 (@) + Allsi, o ()] @
i=1

feF.

where
s; =o(fi(z;)/T) € A° (3)

are the soft predictions from f; about the training data, and F 1s a function class simpler than F;.
The temperature parameter 7' > 0 controls how much do we want to soften or smooth the class-
probability predictions from f;, and the imitation parameter A € [0, 1] balances the importance
between imitating the soft predictions s; and predicting the true hard labels y;. Higher temperatures
lead to softer class-probability predictions s;. In turn, softer class-probability predictions reveal
label dependencies which would be otherwise hidden as extremely large or small numbers. After
distillation, we can use the simpler f; € F for faster prediction at test time.
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Generalized Distillation and LUPI

We now have all the necessary background to describe generalized distillation. To this end, consider
the data { (.4, 27, vi) }_;. Then, the process of generalized distillation is as follows:
1. Learn teacher f; € F; using the input-output pairs { (=}, y;) }_; and Eq. 3.
i=1-

2. Compute teacher soft labels {o(f:(x})/T)}},. using temperature parameter 7" > 0.
3

. Learn student f, € F, using the input-output pairs { (;, v;) }1—, { (i, s;) }i_q. Eq. 4, and
imitation parameter A € [0, 1].?

We say that generalized distillation reduces to Hinton’s distillation if @7 = x; foralll < ¢ < n
and | Fg|c < |F¢|c, where | - | is an appropriate function class capacity measure. Conversely, we

say that generalized distillation reduces to Vapnik’s learning using privileged information if x} 1s a
privileged description of x;, and | Fg|c > |Ft|c.
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Generalized Distillation

This comparison reveals a subtle difference between Hinton’s distillation and Vapnik’s privileged
information. In Hinton’s distillation, F; 1s flexible, for the teacher to exploit her general purpose
representation x; = x; to learn intricate patterns from large amounts of labeled data. In Vapnik’s
privileged information, JF; 18 simple, for the teacher to exploit her rich representation 7 # x; to
learn intricate patterns from small amounts of labeled data. The space of privileged information is
thus a specialized space, one of “metaphoric language™. In our running example of biopsy images,
the space of medical reports 1s much more specialized than the space of pixels, since the space of
pixels can also describe buildings, animals, and other unrelated concepts. In any case, the teacher
must develop a language that effectively communicates information to help the student come up with
better representations. The teacher may do so by incorporating invariances, or biasing them towards
being robust with respect to the kind of distribution shifts that the teacher may expect at test time.
In general, having a teacher is one opportunity to learn characteristics about the decision boundary
which are not contained 1in the training sample, in analogy to a good Bayesian prior.
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Extensions

LUPI

— Difference: In Vapnik’s LUPI, both the decision
function in the input space and the correcting slack
function in the privileged space are learned
simultaneously

— In generalized distillation, the learning of the

privileged space classifier is separate from the input
space classifier

Semi-Supervised Learning

Learning the universum

Multiple Task Learning

Curriculum and reinforcement learning
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Toy Examples

* Clean labels as Priveleged Information
— LUPI is useful: P =96%, | = 88%, L = 95%
* Clean Features as privileged information

— LUPI is not useful because the noise is completely
random: P =90%, | = 68%, L = 70%

* Relevant Features as privileged information
— LUPI is useful: P=98%, | =89%, L =97%
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Practical Examples

* MNIST

— Use 28x28 images as privileged information and
down sampled 7x7 images as input space
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Practical Examples

* CIFAR 10 Semi-Supervised 0.17 . . . .
CIaSSiﬁcation [} 6 llllllllllllllllllllllllllllllllllllllllllllllll
* 300 labeled images = 107 _ o
« 50K unlabeled z
* Privileged Features: 32x32 images T
* Input Features: 32x32 images with E
additive noise 7
e Train teacher on 300 labeled images E 0120 \[wiv teacher — T=2 — T=20 [
(MSE: ~16.5%) : 011k == student — T=5 T=50 |,
e Classify the unlabeled images using ' —_— T=1 —  T=10
the teacher [}.1{8 ' —— — _
).0 (.2 0.4 0.6 0.8 1.0

* Train a student using labeled data
(300) and unlabeled data using
predictions from the teacher: (MSE:
~0.10)

« Compare it to a classifier trained on
all 50K labeled images (MSE: ~0.15)

imitation parameter A
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End of Lecture

better than a thousand days of
diligent study is one day with a great
teacher.

- Danny Hillis
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