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Primary resources

• Learning using privileged information: 
Similarity control and knowledge transfer 
(Vapnik & Izmailov, JMLR: 2015)

• Unifying distillation and privileged information
(Lopez-paz, Bottou, Scholkopf, Vapnik, ICR:
2016)

• Weak supervision and other non-standard 
classification problems: A taxonomy 
(Hernandez-Gonzalez and Lozano, Pattern 
Recognition Letters, 2015)
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Traditional Supervised Learning

• One Instance, One Label

• Labeling is expensive or impractical

– Impossibility of observing individual examples

– Reliability of labeling

• Solutions to Data Hungry AI

– Develop methods that can work with

• Partial Labeling during training

• Use partial labeling during testing

• Can use variety of data from different sources
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Instance Label Relationship
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Types of Supervision
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Examples

• Sample Weighting to reflect confidence in 
labeling or confidence in features
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Examples

• Semi-Supervised 
Classification

• Transductive
Classification

– How can semi-
supervised learning be 
viewed as Learning 
using privileged 
information?
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Presentations

• On classification with bags, groups and sets 
(Sadaf)

• Learning from candidate label sets (Amina)

• Learning from partial labels (Dawood)
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Learning using privileged information

• LUPI
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LUPI: Examples
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LUPI Formulation
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LUPI Results
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LUPI Knowledge Transfer

• LUPI can be viewed as a mechanism for knowledge 
transfer from one space to another

– LUPI allows a student to learn from a teacher
• Teacher controls the boundary of the student from what the

student would draw otherwise

• The teach controls the concept of similarity between examples 
that the student  learns (Kernel Space)
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Distillation

• Learning one classifier from another
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Unifying Distillation and LUPI
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Generalized Distillation and LUPI
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Generalized Distillation
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Extensions

• LUPI
– Difference: In Vapnik’s LUPI, both the decision 

function in the input space and the correcting slack 
function in the privileged space are learned 
simultaneously

– In generalized distillation, the learning of the
privileged space classifier is separate from the input
space classifier

• Semi-Supervised Learning
• Learning the universum
• Multiple Task Learning
• Curriculum and reinforcement learning
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Toy Examples

• Clean labels as Priveleged Information

– LUPI is useful: P = 96%, I = 88%, L = 95% 

• Clean Features as privileged information

– LUPI is not useful because the noise is completely 
random: P = 90%, I = 68%, L = 70%

• Relevant Features as privileged information

– LUPI is useful: P = 98%, I = 89%, L = 97%
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Practical Examples

• MNIST

– Use 28x28 images as privileged information and
down sampled 7x7 images as input space 
information
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Practical Examples
• CIFAR 10 Semi-Supervised 

Classification
• 300 labeled images
• 50K unlabeled
• Privileged Features: 32x32 images
• Input Features: 32x32 images with 

additive noise
• Train teacher on 300 labeled images 

(MSE: ~16.5%)
• Classify the unlabeled images using 

the teacher
• Train a student using labeled data 

(300) and unlabeled data using 
predictions from the teacher: (MSE: 
~0.10)

• Compare it to a classifier trained on 
all 50K labeled images (MSE: ~0.15)
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End of Lecture

better than a thousand days of 
diligent study is one day with a great 

teacher.
- Danny Hillis


