
Controling Rotation Speed

1

var delay = 100;

function render()

{

setTimeout(function() {

requestAnimFrame(render);

gl.clear(gl.COLOR_BUFFER_BIT);

theta += (direction ? 0.1 : -0.1);

gl.uniform1f(thetaLoc, theta);

gl.drawArrays(gl.TRIANGLE_STRIP, 0, 4);

}, delay);

}

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Menus

•Use the HTML select element

•Each entry in the menu is an option

element with an integer value returned by

click event

2

<select id="mymenu" size="3">

<option value="0">Toggle Rotation Direction</option>

<option value="1">Spin Faster</option>

<option value="2">Spin Slower</option>

</select>

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Menu Listener

3

var m = document.getElementById("mymenu");

m.addEventListener("click", function() {

switch (m.selectedIndex) {

case 0:

direction = !direction;

break;

case 1:

delay /= 2.0;

break;

case 2:

delay *= 2.0;

break;

}

}); Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Using keydown Event

4

window.addEventListener("keydown", function() {

switch (event.keyCode) {

case 49: // ’1’ key

direction = !direction;

break;

case 50: // ’2’ key

delay /= 2.0;

break;

case 51: // ’3’ key

delay *= 2.0;

break;

}

});

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Don’t Know Unicode

5

window.onkeydown = function(event) {

var key = String.fromCharCode(event.keyCode);

switch (key) {

case ’1’:

direction = !direction;

break;

case ’2’:

delay /= 2.0;

break;

case ’3’:

delay *= 2.0;

break;

}

}; Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Slider Element

•Puts slider on page

- Give it an identifier

- Give it minimum and maximum values

- Give it a step size needed to generate an event

- Give it an initial value

•Use div tag to put below canvas

6

<div>

speed 0 <input id="slide" type="range"

min="0" max="100" step="10" value="50" />

100 </div>

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

onchange Event Listener

7

document.getElementById("slide").onchange =

function() { delay = event.srcElement.value; };

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

8

Introduction to Computer

Graphics with WebGL

Ed Angel

Professor Emeritus of Computer Science

Founding Director, Arts, Research,

Technology and Science Laboratory

University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

9

Position Input

Ed Angel

Professor Emeritus of Computer Science

University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

10

Objectives

•Learn to use the mouse to give locations

- Must convert from position on canvas to

position in application

•Respond to window events such as

reshapes triggered by the mouse

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Window Coordinates

11

w

h

(0, 0)

(w -1, h-1)

(xw, yw)

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Window to Clip Coordinates

12



x  1
2* wx

w



y  1
2 * w

(h  y)

h



(0,h) (1,1)

(w,0) (1,1)

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Returning Position from

Click Event

Canvas specified in HTML file of size

canvas.width x canvas.height

Returned window coordinates are event.clientX

and event.clientY

13

// add a vertex to GPU for each click

canvas.addEventListener("click", function() {

gl.bindBuffer(gl.ARRAY_BUFFER, vBuffer);

var t = vec2(-1 + 2*event.clientX/canvas.width,

-1 + 2*(canvas.height-event.clientY)/canvas.height);

gl.bufferSubData(gl.ARRAY_BUFFER,

sizeof[’vec2’]*index, t);

index++;

}); Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

CAD-like Examples

www.cs.unm.edu/~angel/WebGL/7E/03

square.html: puts a colored square at location of

each mouse click

triangle.html: first three mouse clicks define first

triangle of triangle strip. Each succeeding

mouse clicks adds a new triangle at end of strip

cad1.html: draw a rectangle for each two

successive mouse clicks

cad2.html: draws arbitrary polygons

14Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Window Events

•Events can be generated by actions that

affect the canvas window

- moving or exposing a window

- resizing a window

- opening a window

- iconifying/deiconifying a window a window

•Note that events generated by other

application that use the canvas can affect the

WebGL canvas

- There are default callbacks for some of these events
15Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Reshape Events

•Suppose we use the mouse to change the

size of our canvas

•Must redraw the contents

•Options

- Display the same objects but change size

- Display more or fewer objects at the same size

•Almost always want to keep proportions

16Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

onresize Event

•Returns size of new canvas is available

through window.innerHeight and window.

innerWidth

•Use innerHeight and innerWidth to

change canvas.height and canvas.width

•Example (next slide): maintaining a

square display

17Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Keeping Square Proportions

18

window.onresize = function() {

var min = innerWidth;

if (innerHeight < min) {

min = innerHeight;

}

if (min < canvas.width || min < canvas.height) {

gl.viewport(0, canvas.height-min, min, min);

}

};

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

19

Introduction to Computer

Graphics with WebGL

Ed Angel

Professor Emeritus of Computer Science

Founding Director, Arts, Research,

Technology and Science Laboratory

University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

20

Picking

Ed Angel

Professor Emeritus of Computer Science

University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

21

Objectives

•How do we identify objects on the display

•Overview three methods

- selection

- using an off-screen buffer and color

- bounding boxes

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Why is Picking Difficult?

•Given a point in the canvas how do map

this point back to an object?

•Lack of uniqueness

•Forward nature of pipeline

•Take into account difficulty of getting an

exact position with a pointing device

22Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Selection

•Supported by fixed function OpenGL pipeline

•Each primitive is given an id by the

application indicating to which object it

belongs

•As the scene is rendered, the id’s of

primitives that render near the mouse are put

in a hit list

• Examine the hit list after the rendering

23Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Selection

• Implement by creating a window that

corresponds to small area around mouse

- We can track whether or not a primitive renders

to this window

- Do not want to display this rendering

- Render off-screen to an extra color buffer or

user back buffer and don’t do a swap

•Requires a rendering which puts depths

into hit record

•Possible to implement with WebGL
24Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Picking with Color

•We can use gl.readPixels to get the color at

any location in window

• Idea is to use color to identify object but

- Multiple objects can have the same color

- A shaded object will display many colors

•Solution: assign a unique color to each

object and render off-screen

- Use gl.readPixels to get color at mouse location

- Use a table to map this color to an object

25Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Picking with Bounding Boxes

•Both previous methods require an extra

rendering each time we do a pick

•Alternative is to use a table of (axis-aligned)

bounding boxes

•Map mouse location to object through table

26

inside bounding box

outside triangle

inside bounding box

inside triangle

outside bounding box

outside triangle

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

27

Introduction to Computer

Graphics with WebGL

Ed Angel

Professor Emeritus of Computer Science

Founding Director, Arts, Research,

Technology and Science Laboratory

University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

28

Geometry

Ed Angel

Professor Emeritus of Computer Science

University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

29

Objectives

• Introduce the elements of geometry

- Scalars

- Vectors

- Points

•Develop mathematical operations among

them in a coordinate-free manner

•Define basic primitives

- Line segments

- Polygons

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

30

Basic Elements

• Geometry is the study of the relationships

among objects in an n-dimensional space

- In computer graphics, we are interested in

objects that exist in three dimensions

• Want a minimum set of primitives from which we

can build more sophisticated objects

• We will need three basic elements

- Scalars

- Vectors

- Points

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

31

Coordinate-Free Geometry

• When we learned simple geometry, most of us started
with a Cartesian approach

- Points were at locations in space p=(x,y,z)

- We derived results by algebraic manipulations
involving these coordinates

• This approach was nonphysical

- Physically, points exist regardless of the location of
an arbitrary coordinate system

- Most geometric results are independent of the
coordinate system

- Example Euclidean geometry: two triangles are
identical if two corresponding sides and the angle
between them are identical

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

32

Scalars

• Need three basic elements in geometry

- Scalars, Vectors, Points

• Scalars can be defined as members of sets
which can be combined by two operations
(addition and multiplication) obeying some
fundamental axioms (associativity, commutivity,
inverses)

• Examples include the real and complex number
systems under the ordinary rules with which we
are familiar

• Scalars alone have no geometric properties

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

33

Vectors

•Physical definition: a vector is a quantity
with two attributes

- Direction

- Magnitude

•Examples include
- Force

- Velocity

- Directed line segments

• Most important example for graphics

• Can map to other types

v

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

34

Vector Operations

• Every vector has an inverse

- Same magnitude but points in opposite direction

• Every vector can be multiplied by a scalar

• There is a zero vector

- Zero magnitude, undefined orientation

• The sum of any two vectors is a vector

- Use head-to-tail axiom

v -v v
v

u

w

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

35

Linear Vector Spaces

•Mathematical system for manipulating vectors

•Operations

- Scalar-vector multiplication u=v

- Vector-vector addition: w=u+v

•Expressions such as

v=u+2w-3r

Make sense in a vector space

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

36

Vectors Lack Position

• These vectors are identical

- Same length and magnitude

• Vectors spaces insufficient for geometry

- Need points

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

37

Points

•Location in space

•Operations allowed between points and

vectors

- Point-point subtraction yields a vector

- Equivalent to point-vector addition

P=v+Q

v=P-Q

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

38

Affine Spaces

•Point + a vector space

•Operations

- Vector-vector addition

- Scalar-vector multiplication

- Point-vector addition

- Scalar-scalar operations

• For any point define

- 1 • P = P

- 0 • P = 0 (zero vector)

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

39

Lines

•Consider all points of the form

- P()=P0 +  d

- Set of all points that pass through P0 in the

direction of the vector d

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

