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Objectives
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* Introduce the basic input devices

Physical Devices
_ogical Devices

nput Modes

* Event-driven input

* Introduce double buffering for smooth
animations

* Programming event input with WebGL
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- Project Sketchpad

*lvan Sutherland (MIT 1963) established
the basic interactive paradigm that
characterizes interactive computer
graphics:

- User sees an object on the display

- User points to (picks) the object with an input
device (light pen, mouse, trackball)

- Object changes (moves, rotates, morphs)
- Repeat
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B Graphical Input
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* Devices can be described either by

- Physical properties
Mouse

Keyboard
Trackball

- Logical Properties
What is returned to program via API
— A position
— An object identifier

* Modes

- How and when input is obtained
Reqguest or event
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- Physical Devices
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- Photodetector
\=
Threshold

detector Computer
—>

mouse trackball

light pen
— L}
=
data tablet joy stick space ball
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~&" Incremental (Relative) Devices

* Devices such as the data tablet return a
nosition directly to the operating system

* Devices such as the mouse, trackball, and
Jjoy stick return incremental inputs (or
velocities) to the operating system

- Must integrate these inputs to obtain an
absolute position
Rotation of cylinders in mouse
Roll of trackball
Difficult to obtain absolute position
Can get variable sensitivity
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Logical Devices

 Consider the C and C++ code
-CH++:cin >> x;
-C: scanf (“"%d”, &x);

\What Is

the input device?

- Can'’t tell from the code

- Could be keyboard, file, output from another
program

* The coo
- A num

e provides logical input
per (an int) is returned to the program

regard

ess of the physical device
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~#" Graphical Logical Devices

 Graphical input is more varied than input to
standard programs which is usually numbers,
characters, or bits

* Two older APIs (GKS, PHIGS) defined six types
of logical input
- Locator: return a position
- Pick: return ID of an object
- Keyboard: return strings of characters
- Stroke: return array of positions
- Valuator: return floating point number
- Choice: return one of n items
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- X Window Input
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* The X Window System introduced a client-server
model for a network of workstations
- Client: OpenGL program

- Graphics Server: bitmap display with a pointing
device and a keyboard

Graphics server

Print server

Compute server File serve Graphics rvr
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- Input Modes

* Input devices contain a trigger which can
be used to send a signal to the operating
system

- Button on mouse
- Pressing or releasing a key

* When triggered, input devices return
Information (their measure) to the system
- Mouse returns position information
- Keyboard returns ASCII code
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- Request Mode

* Input provided to program only when user
triggers the device

* Typical of keyboard input

- Can erase (backspace), edit, correct until enter
(return) key (the trigger) is depressed

Request
Trigger Measure i<

> Program
rocess : rocess e

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 12




I'he Universily ol New Mexico

*l. Event Mode

* Most systems have more than one input
device, each of which can be triggered at
an arbitrary time by a user

* Each trigger generates an event whose
measure IS put in an event queue which
can be examined by the user program

) ~ Await
Trigger 1 \ Measure | Event -a——

rocess rocess ueue —— p
P P | Measure d .  Event .

Program
‘ Trigger
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- Event Types

*Window: resize, expose, iconify

* Mouse: click one or more buttons
* Motion: move mouse

« Keyboard: press or release a key

e |dle: nonevent

- Define what should be done If no other event Is
In queue
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*l. Callbacks

* Programming interface for event-driven
iInput uses callback functions or event
listeners

- Define a callback for each event the graphics
system recognizes

- Browsers enters an event loop and responds to
those events for which it has callbacks
registered

- The callback function i1s executed when the
event occurs
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8" Execution in a Browser
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i URL
Browser - Web
Server
Web Page
HTML
JS
files  jS Engine

CPU/GPU \
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8" Execution in a Browser

e Start with HTML file

- Describes the page
- May contain the shaders
- Loads files

*Files are loaded asynchronously and JS
code Is executed

* Then what?

* Browser Is In an event loop and waits for
an event
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*l. onload Event

* What happens with our JS file containing
the graphics part of our application?

- All the "action” is within functions such as init()
and render()

- Consequently these functions are never
executed and we see nothing
» Solution: use the onload window event to
Initiate execution of the init function
- onload event occurs when all files read
- window.onload = init;
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- Rotating Square

« Consider the four points

(—sin 6, cos 0)

(cos 6, sin 6)

(—cos 6, —sin 6)
(sin 6, —cos 0)

Animate display by rerendering with
different values of 0
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~&" Simple but Slow Method

for(var theta = 0.0; theta <thetaMax; theta += dtheta; {

vertices[0] = vec2(Math.sin(theta), Math.cos.(theta));

vertices[1] = vec2(Math.sin(theta), -Math.cos.(theta));
vertices[2] = vec2(-Math.sin(theta), -Math.cos.(theta));
vertices[3] = vec2(-Math.sin(theta), Math.cos.(theta));

gl.bufferSubData(.........................

render();
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Better Way

* Send original vertices to vertex shader

e Senc
eCOm

0 to shader as a uniform variable
oute vertices In vertex shader

e Renc

er recursively
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*l. Render Function
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var thetaLoc = gl.getUniformLocation(program, "theta");

function render()

{
gl.clear(gl. COLOR_BUFFER_BIT);

theta += 0.1,

gl.uniform1f(thetaloc, theta);
gl.drawArrays(gl. TRIANGLE_STRIP, 0, 4);
render();
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*l. Vertex Shader
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attribute vec4 vPosition;
uniform float theta;

void main()

{
gl_Position.x = -sin(theta) * vPosition.x + cos(theta) * vPosition.y;
gl_Position.y = sin(theta) * vPosition.y + cos(theta) * vPosition.x;
gl _Position.z = 0.0;
gl_Position.w = 1.0;

¥
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~ Double Buffering

 Although we are rendering the square, it
always into a buffer that is not displayed

* Browser uses double buffering
- Always display front buffer
- Rendering into back buffer
- Need a buffer swap

 Prevents display of a partial rendering
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~#" Triggering a Buffer Swap

* Browsers refresh the display at ~60 Hz
- redisplay of front buffer
- not a buffer swap

* Trigger a buffer swap though an event

* TWo options for rotating square
- Interval timer
- requestAnimFrame
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<~ Interval Timer

* Executes a function after a specified
number of milliseconds

- Also generates a buffer swap

setinterval(render, interval);

* Note an interval of O generates buffer
swaps as fast as possible
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- requestAnimFrame
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function render {

gl.clear(gl.COLOR_BUFFER_BIT);
theta += 0.1;

gl.uniform1f(thetalLoc, theta);

gl.drawArrays(gl. TRIANGLE_STRIP, 0, 4);
requestAnimFrame(render);

}
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*l. Add an Interval
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function render()
{
setTimeout( function() {
requestAnimFrame(render);
gl.clear(gl. COLOR_BUFFER_BIT);
theta += 0.1,
gl.uniform1f(thetaloc, theta);
gl.drawArrays(gl. TRIANGLE_STRIP, 0, 4);
}, 100);

¥
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- Objectives

 Learn to build interactive programs using
event listeners
- Buttons
- Menus
- Mouse
- Keyboard
- Reshape
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- Adding a Button

e Let’'s add a button to control the rotation
direction for our rotating cube

* In the render function we can use a var
direction which is true or false to add or
subtract a constant to the angle

var direction = true; // global initialization

//'In render()

If(direction) theta +=0.1;
else theta -=0.1;
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*l. The Button
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*In the HTML file

<button id=""DirectionButton">Change Rotation Direction

</button>
- Uses HTML button tag

- 1d gives an identifier we can use in JS file

- Text “Change Rotation Direction” displayed in
button

* Clicking on button generates a click event

* Note we are using default style and could
use CSS or JQuery to get a prettier button
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*l. Button Event Listener

*We still need to define the listener
- no listener and the event occurs but is ignored

 Two forms for event listener in JS file

var myButton = document.getElementByld("DirectionButton™);

myButton.addEventListener("click", function() {
direction = Idirection;

};

document.getElementByld("DirectionButton™).onclick =
function() { direction = !direction; };
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<~ onclick Variants
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myButton.addEventListener("click", function() {
If (event.button == 0) { direction = !direction; }

3);

myButton.addEventListener("click", function() {
If (event.shiftkey == 0) { direction = !direction; }
3);

<button onclick="direction = !direction'></button>
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