
1

Introduction to Computer

Graphics with WebGL

Ed Angel

Professor Emeritus of Computer Science

Founding Director, Arts, Research,

Technology and Science Laboratory

University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

2

Input and Interaction

Ed Angel

Professor Emeritus of Computer Science,

University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

3

Objectives

• Introduce the basic input devices

- Physical Devices

- Logical Devices

- Input Modes

•Event-driven input

• Introduce double buffering for smooth

animations

•Programming event input with WebGL

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

4

Project Sketchpad

• Ivan Sutherland (MIT 1963) established

the basic interactive paradigm that

characterizes interactive computer

graphics:

- User sees an object on the display

- User points to (picks) the object with an input

device (light pen, mouse, trackball)

- Object changes (moves, rotates, morphs)

- Repeat

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

5

Graphical Input

•Devices can be described either by
- Physical properties

• Mouse

• Keyboard

• Trackball

- Logical Properties
• What is returned to program via API

– A position

– An object identifier

•Modes
- How and when input is obtained

• Request or event

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

6

Physical Devices

mouse trackball
light pen

data tablet joy stick space ball

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

7

Incremental (Relative) Devices

•Devices such as the data tablet return a
position directly to the operating system

•Devices such as the mouse, trackball, and
joy stick return incremental inputs (or
velocities) to the operating system

- Must integrate these inputs to obtain an
absolute position

• Rotation of cylinders in mouse

• Roll of trackball

• Difficult to obtain absolute position

• Can get variable sensitivity

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

8

Logical Devices

•Consider the C and C++ code
- C++: cin >> x;

- C: scanf (“%d”, &x);

•What is the input device?
- Can’t tell from the code

- Could be keyboard, file, output from another
program

•The code provides logical input
- A number (an int) is returned to the program

regardless of the physical device

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

9

Graphical Logical Devices

• Graphical input is more varied than input to

standard programs which is usually numbers,

characters, or bits

• Two older APIs (GKS, PHIGS) defined six types

of logical input

- Locator: return a position

- Pick: return ID of an object

- Keyboard: return strings of characters

- Stroke: return array of positions

- Valuator: return floating point number

- Choice: return one of n items

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

10

X Window Input

• The X Window System introduced a client-server

model for a network of workstations

- Client: OpenGL program

- Graphics Server: bitmap display with a pointing

device and a keyboard

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

11

Input Modes

• Input devices contain a trigger which can

be used to send a signal to the operating

system

- Button on mouse

- Pressing or releasing a key

•When triggered, input devices return

information (their measure) to the system

- Mouse returns position information

- Keyboard returns ASCII code

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

12

Request Mode

• Input provided to program only when user

triggers the device

•Typical of keyboard input

- Can erase (backspace), edit, correct until enter

(return) key (the trigger) is depressed

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

13

Event Mode

•Most systems have more than one input

device, each of which can be triggered at

an arbitrary time by a user

•Each trigger generates an event whose

measure is put in an event queue which

can be examined by the user program

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

14

Event Types

•Window: resize, expose, iconify

•Mouse: click one or more buttons

•Motion: move mouse

•Keyboard: press or release a key

• Idle: nonevent

- Define what should be done if no other event is

in queue

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

15

Introduction to Computer

Graphics with WebGL

Ed Angel

Professor Emeritus of Computer Science

Founding Director, Arts, Research,

Technology and Science Laboratory

University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

16

Animation

Ed Angel

Professor Emeritus of Computer Science,

University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

17

Callbacks

•Programming interface for event-driven

input uses callback functions or event

listeners

- Define a callback for each event the graphics

system recognizes

- Browsers enters an event loop and responds to

those events for which it has callbacks

registered

- The callback function is executed when the

event occurs

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Execution in a Browser

18Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Execution in a Browser

•Start with HTML file

- Describes the page

- May contain the shaders

- Loads files

•Files are loaded asynchronously and JS

code is executed

•Then what?

•Browser is in an event loop and waits for

an event

19Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

onload Event

•What happens with our JS file containing

the graphics part of our application?

- All the “action” is within functions such as init()

and render()

- Consequently these functions are never

executed and we see nothing

•Solution: use the onload window event to

initiate execution of the init function

- onload event occurs when all files read

- window.onload = init;

20Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Rotating Square

•Consider the four points

Animate display by rerendering with

different values of q
21Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Simple but Slow Method

22

for(var theta = 0.0; theta <thetaMax; theta += dtheta; {

vertices[0] = vec2(Math.sin(theta), Math.cos.(theta));

vertices[1] = vec2(Math.sin(theta), -Math.cos.(theta));

vertices[2] = vec2(-Math.sin(theta), -Math.cos.(theta));

vertices[3] = vec2(-Math.sin(theta), Math.cos.(theta));

gl.bufferSubData(…………………….

render();

}

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Better Way

•Send original vertices to vertex shader

•Send q to shader as a uniform variable

•Compute vertices in vertex shader

•Render recursively

23Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Render Function

24

function render()

{

gl.clear(gl.COLOR_BUFFER_BIT);

theta += 0.1;

gl.uniform1f(thetaLoc, theta);

gl.drawArrays(gl.TRIANGLE_STRIP, 0, 4);

render();

}

var thetaLoc = gl.getUniformLocation(program, "theta");

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Vertex Shader

25

attribute vec4 vPosition;

uniform float theta;

void main()

{

gl_Position.x = -sin(theta) * vPosition.x + cos(theta) * vPosition.y;

gl_Position.y = sin(theta) * vPosition.y + cos(theta) * vPosition.x;

gl_Position.z = 0.0;

gl_Position.w = 1.0;

}

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Double Buffering

•Although we are rendering the square, it

always into a buffer that is not displayed

•Browser uses double buffering

- Always display front buffer

- Rendering into back buffer

- Need a buffer swap

•Prevents display of a partial rendering

26Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Triggering a Buffer Swap

•Browsers refresh the display at ~60 Hz

- redisplay of front buffer

- not a buffer swap

•Trigger a buffer swap though an event

•Two options for rotating square

- Interval timer

- requestAnimFrame

27Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Interval Timer

•Executes a function after a specified

number of milliseconds

- Also generates a buffer swap

•Note an interval of 0 generates buffer

swaps as fast as possible

28

setInterval(render, interval);

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

requestAnimFrame

29

function render {

gl.clear(gl.COLOR_BUFFER_BIT);

theta += 0.1;

gl.uniform1f(thetaLoc, theta);

gl.drawArrays(gl.TRIANGLE_STRIP, 0, 4);

requestAnimFrame(render);

}

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Add an Interval

30

function render()

{

setTimeout(function() {

requestAnimFrame(render);

gl.clear(gl.COLOR_BUFFER_BIT);

theta += 0.1;

gl.uniform1f(thetaLoc, theta);

gl.drawArrays(gl.TRIANGLE_STRIP, 0, 4);

}, 100);

}

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

31

Introduction to Computer

Graphics with WebGL

Ed Angel

Professor Emeritus of Computer Science

Founding Director, Arts, Research,

Technology and Science Laboratory

University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

32

Working with Callbacks

Ed Angel

Professor Emeritus of Computer Science

University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

33

Objectives

•Learn to build interactive programs using

event listeners

- Buttons

- Menus

- Mouse

- Keyboard

- Reshape

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Adding a Button

•Let’s add a button to control the rotation

direction for our rotating cube

• In the render function we can use a var

direction which is true or false to add or

subtract a constant to the angle

34

var direction = true; // global initialization

// in render()

if(direction) theta += 0.1;

else theta -= 0.1;
Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

The Button

• In the HTML file

- Uses HTML button tag

- id gives an identifier we can use in JS file

- Text “Change Rotation Direction” displayed in

button

•Clicking on button generates a click event

•Note we are using default style and could

use CSS or jQuery to get a prettier button

35

<button id="DirectionButton">Change Rotation Direction

</button>

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Button Event Listener

•We still need to define the listener

- no listener and the event occurs but is ignored

•Two forms for event listener in JS file

36

var myButton = document.getElementById("DirectionButton");

myButton.addEventListener("click", function() {

direction = !direction;

});

document.getElementById("DirectionButton").onclick =

function() { direction = !direction; };

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

onclick Variants

37

myButton.addEventListener("click", function() {

if (event.button == 0) { direction = !direction; }

});

myButton.addEventListener("click", function() {

if (event.shiftKey == 0) { direction = !direction; }

});

<button onclick="direction = !direction"></button>

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

