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Objectives

• Introduce the basic input devices

- Physical Devices

- Logical Devices

- Input Modes

•Event-driven input

• Introduce double buffering for smooth 

animations

•Programming event input with WebGL
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Project Sketchpad

• Ivan Sutherland (MIT 1963) established 

the basic interactive paradigm that 

characterizes interactive computer 

graphics:

- User sees an object on the display

- User points to (picks) the object with an input 

device (light pen, mouse, trackball)

- Object changes (moves, rotates, morphs)

- Repeat
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Graphical Input

•Devices can be described either by
- Physical properties

• Mouse

• Keyboard

• Trackball

- Logical Properties
• What is returned to program via API

– A position

– An object identifier

•Modes
- How and when input is obtained

• Request or event
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Physical Devices

mouse trackball
light pen

data tablet joy stick space ball
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Incremental (Relative) Devices

•Devices such as the data tablet return a 
position directly to the operating system

•Devices such as the mouse, trackball, and 
joy stick return incremental inputs (or 
velocities) to the operating system

- Must integrate these inputs to obtain an 
absolute position

• Rotation of cylinders in mouse

• Roll of trackball

• Difficult to obtain absolute position

• Can get variable sensitivity 
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Logical Devices

•Consider the C and C++ code
- C++: cin >> x;

- C: scanf (“%d”, &x);

•What is the input device?
- Can’t tell from the code

- Could be keyboard, file, output from another 
program

•The code provides logical input
- A number (an int) is returned to the program 

regardless of the physical device
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Graphical Logical Devices

• Graphical input is more varied than input to 

standard programs which is usually numbers, 

characters, or bits

• Two older APIs (GKS, PHIGS) defined six types 

of logical input

- Locator: return a position

- Pick: return ID of an object

- Keyboard: return strings of characters

- Stroke: return array of positions

- Valuator: return floating point number

- Choice: return one of n items
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X Window Input

• The X Window System introduced a client-server 

model for a network of workstations

- Client: OpenGL program

- Graphics Server: bitmap display with a pointing 

device and a keyboard
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Input Modes

• Input devices contain a trigger which can 

be used to send a signal to the operating 

system

- Button on mouse

- Pressing or releasing a key

•When triggered, input devices return 

information (their measure) to the system

- Mouse returns position information

- Keyboard returns ASCII code
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Request Mode

• Input provided to program only when user 

triggers the device

•Typical of keyboard input

- Can erase (backspace), edit, correct until enter 

(return) key (the trigger) is depressed
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Event Mode

•Most systems have more than one input 

device, each of which can be triggered at 

an arbitrary time by a user

•Each trigger generates an event whose 

measure is put in an event queue which 

can be examined by the user program
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Event Types

•Window: resize, expose, iconify

•Mouse: click one or more buttons

•Motion: move mouse

•Keyboard: press or release a key

• Idle: nonevent

- Define what should be done if no other event is 

in queue
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Callbacks

•Programming interface for event-driven 

input uses callback functions or event 

listeners

- Define a callback for each event the graphics 

system recognizes

- Browsers enters an event loop and responds to 

those events for which it has callbacks 

registered

- The callback function is executed when the 

event occurs
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Execution in a Browser
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Execution in a Browser

•Start with HTML file

- Describes the page

- May contain the shaders

- Loads files

•Files are loaded asynchronously and JS 

code is executed

•Then what?

•Browser is in an event loop and waits for 

an event
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onload Event

•What happens with our JS file containing 

the graphics part of our application?

- All the “action” is within functions such as init() 

and render() 

- Consequently these functions are never 

executed and we see nothing

•Solution: use the onload window event to 

initiate execution of the init function

- onload event occurs when all files read

- window.onload = init;
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Rotating Square

•Consider the four points

Animate display by rerendering with 

different values of q
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Simple but Slow Method
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for(var theta = 0.0; theta <thetaMax; theta += dtheta; {

vertices[0] = vec2(Math.sin(theta), Math.cos.(theta));

vertices[1] = vec2(Math.sin(theta), -Math.cos.(theta));

vertices[2] = vec2(-Math.sin(theta), -Math.cos.(theta));

vertices[3] = vec2(-Math.sin(theta), Math.cos.(theta));

gl.bufferSubData(…………………….

render();

}
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Better Way

•Send original vertices to vertex shader

•Send q to shader as a uniform variable

•Compute vertices in vertex shader

•Render recursively
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Render Function
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function render()

{

gl.clear(gl.COLOR_BUFFER_BIT);

theta += 0.1;

gl.uniform1f(thetaLoc, theta);

gl.drawArrays(gl.TRIANGLE_STRIP, 0, 4);

render();

}

var thetaLoc = gl.getUniformLocation(program, "theta");
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Vertex Shader
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attribute vec4 vPosition;

uniform float theta;

void main()

{

gl_Position.x = -sin(theta) * vPosition.x + cos(theta) * vPosition.y;

gl_Position.y = sin(theta) * vPosition.y + cos(theta) * vPosition.x;

gl_Position.z = 0.0;

gl_Position.w = 1.0;

}
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Double Buffering

•Although we are rendering the square, it 

always into a buffer that is not displayed

•Browser uses double buffering

- Always display front buffer

- Rendering into back buffer

- Need a buffer swap

•Prevents display of a partial rendering
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Triggering a Buffer Swap

•Browsers refresh the display at ~60 Hz

- redisplay of front buffer

- not a buffer swap

•Trigger a buffer swap though an event

•Two options for rotating square

- Interval timer

- requestAnimFrame
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Interval Timer

•Executes a function after a specified 

number of milliseconds

- Also generates a buffer swap

•Note an interval of 0 generates buffer 

swaps as fast as possible

28

setInterval(render, interval);
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requestAnimFrame
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function render {

gl.clear(gl.COLOR_BUFFER_BIT);

theta += 0.1;

gl.uniform1f(thetaLoc, theta);

gl.drawArrays(gl.TRIANGLE_STRIP, 0, 4);

requestAnimFrame(render);

}
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Add an Interval
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function render()

{

setTimeout( function() {

requestAnimFrame(render);

gl.clear(gl.COLOR_BUFFER_BIT);

theta += 0.1;

gl.uniform1f(thetaLoc, theta);

gl.drawArrays(gl.TRIANGLE_STRIP, 0, 4);

}, 100);

}  
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Objectives

•Learn to build interactive programs using 

event listeners

- Buttons

- Menus

- Mouse

- Keyboard

- Reshape
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Adding a Button

•Let’s add a button to control the rotation 

direction for our rotating cube

• In the render function we can use a var 

direction which is true or false to add or 

subtract a constant to the angle

34

var direction = true; // global initialization

// in render()

if(direction) theta += 0.1;

else theta -= 0.1;
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The Button

• In the HTML file

- Uses HTML button tag

- id gives an identifier we can use in JS file

- Text “Change Rotation Direction” displayed in 

button

•Clicking on button generates a click event

•Note we are using default style and could 

use CSS or jQuery to get a prettier button

35

<button id="DirectionButton">Change Rotation Direction

</button>
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Button Event Listener

•We still need to define the listener

- no listener and the event occurs but is ignored

•Two forms for event listener in JS file

36

var myButton = document.getElementById("DirectionButton");

myButton.addEventListener("click", function() { 

direction = !direction;

});

document.getElementById("DirectionButton").onclick =

function() { direction = !direction; };
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onclick Variants
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myButton.addEventListener("click", function() {

if (event.button == 0) { direction = !direction; }

});

myButton.addEventListener("click", function() {

if (event.shiftKey == 0) { direction = !direction; }

});

<button onclick="direction = !direction"></button>
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