g+ [ntroduction to Computer
Graphics with WebGL

Ed Angel
Professor Emeritus of Computer Science

Founding Director, Arts, Research,
Technology and Science Laboratory

University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Input and Interaction

Ed Angel
Professor Emeritus of Computer Science,
University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Objectives

he Universily ol New Mexico

{m

* Introduce the basic input devices

Physical Devices
_ogical Devices

nput Modes

* Event-driven input

* Introduce double buffering for smooth
animations

* Programming event input with WebGL

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

- Project Sketchpad

*lvan Sutherland (MIT 1963) established
the basic interactive paradigm that
characterizes interactive computer
graphics:

- User sees an object on the display

- User points to (picks) the object with an input
device (light pen, mouse, trackball)

- Object changes (moves, rotates, morphs)
- Repeat

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

B Graphical Input

mversily ol New Mexico

* Devices can be described either by

- Physical properties
Mouse

Keyboard
Trackball

- Logical Properties
What is returned to program via API
— A position
— An object identifier

* Modes

- How and when input is obtained
Reqguest or event

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

- Physical Devices

The Umiversily ol New Mexico

- Photodetector
\=
Threshold

detector Computer
—>

mouse trackball

light pen
— L}
=
data tablet joy stick space ball

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 6

he Universily ol New Mexico

~&" Incremental (Relative) Devices

* Devices such as the data tablet return a
nosition directly to the operating system

* Devices such as the mouse, trackball, and
Jjoy stick return incremental inputs (or
velocities) to the operating system

- Must integrate these inputs to obtain an
absolute position
Rotation of cylinders in mouse
Roll of trackball
Difficult to obtain absolute position
Can get variable sensitivity

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 !

he Universily ol New Mexico

{m

Logical Devices

 Consider the C and C++ code
-CH++:cin >> x;
-C: scanf (“"%d”, &x);

\What Is

the input device?

- Can'’t tell from the code

- Could be keyboard, file, output from another
program

* The coo
- A num

e provides logical input
per (an int) is returned to the program

regard

ess of the physical device

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

~#" Graphical Logical Devices

 Graphical input is more varied than input to
standard programs which is usually numbers,
characters, or bits

* Two older APIs (GKS, PHIGS) defined six types
of logical input
- Locator: return a position
- Pick: return ID of an object
- Keyboard: return strings of characters
- Stroke: return array of positions
- Valuator: return floating point number
- Choice: return one of n items

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

- X Window Input

The Umiversily ol New Mexico

* The X Window System introduced a client-server
model for a network of workstations
- Client: OpenGL program

- Graphics Server: bitmap display with a pointing
device and a keyboard

Graphics server

Print server

Compute server File serve Graphics rvr

Angel and Shreiner: Interactive Computer Graphlcs 7E ©Add|son -Wesley 2015 10

he Universily ol New Mexico

- Input Modes

* Input devices contain a trigger which can
be used to send a signal to the operating
system

- Button on mouse
- Pressing or releasing a key

* When triggered, input devices return
Information (their measure) to the system
- Mouse returns position information
- Keyboard returns ASCII code

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 1

he Universily ol New Mexico

- Request Mode

* Input provided to program only when user
triggers the device

* Typical of keyboard input

- Can erase (backspace), edit, correct until enter
(return) key (the trigger) is depressed

Request
Trigger Measure i<

> Program
rocess : rocess e

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 12

I'he Universily ol New Mexico

*l. Event Mode

* Most systems have more than one input
device, each of which can be triggered at
an arbitrary time by a user

* Each trigger generates an event whose
measure IS put in an event queue which
can be examined by the user program

) ~ Await
Trigger 1 \ Measure | Event -a——

rocess rocess ueue —— p
P P | Measure d . Event .

Program
‘ Trigger

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 13

he Universily ol New Mexico

- Event Types

*Window: resize, expose, iconify

* Mouse: click one or more buttons
* Motion: move mouse

« Keyboard: press or release a key

e |dle: nonevent

- Define what should be done If no other event Is
In queue

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 14

g+ [ntroduction to Computer
Graphics with WebGL

Ed Angel
Professor Emeritus of Computer Science

Founding Director, Arts, Research,
Technology and Science Laboratory

University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 15

Animation

Ed Angel
Professor Emeritus of Computer Science,
University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

16

he Universily ol New Mexico

*l. Callbacks

* Programming interface for event-driven
iInput uses callback functions or event
listeners

- Define a callback for each event the graphics
system recognizes

- Browsers enters an event loop and responds to
those events for which it has callbacks
registered

- The callback function i1s executed when the
event occurs

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 1

8" Execution in a Browser

The Umiversily ol New Mexico

i URL
Browser - Web
Server
Web Page
HTML
JS
files jS Engine

CPU/GPU \

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Canvas

18

8" Execution in a Browser

e Start with HTML file

- Describes the page
- May contain the shaders
- Loads files

*Files are loaded asynchronously and JS
code Is executed

* Then what?

* Browser Is In an event loop and waits for
an event

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

19

he Universily ol New Mexico

*l. onload Event

* What happens with our JS file containing
the graphics part of our application?

- All the "action” is within functions such as init()
and render()

- Consequently these functions are never
executed and we see nothing
» Solution: use the onload window event to
Initiate execution of the init function
- onload event occurs when all files read
- window.onload = init;

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 20

he Universily ol New Mexico

- Rotating Square

« Consider the four points

(—sin 6, cos 0)

(cos 6, sin 6)

(—cos 6, —sin 6)
(sin 6, —cos 0)

Animate display by rerendering with
different values of 0

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

21

he Universily ol New Mexico

~&" Simple but Slow Method

for(var theta = 0.0; theta <thetaMax; theta += dtheta; {

vertices[0] = vec2(Math.sin(theta), Math.cos.(theta));

vertices[1] = vec2(Math.sin(theta), -Math.cos.(theta));
vertices[2] = vec2(-Math.sin(theta), -Math.cos.(theta));
vertices[3] = vec2(-Math.sin(theta), Math.cos.(theta));

gl.bufferSubData(.........................

render();

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 22

he Universily ol New Mexico

{m

Better Way

* Send original vertices to vertex shader

e Senc
eCOm

0 to shader as a uniform variable
oute vertices In vertex shader

e Renc

er recursively

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

23

*l. Render Function

he Universily ol New Mexico

var thetaLoc = gl.getUniformLocation(program, "theta");

function render()

{
gl.clear(gl. COLOR_BUFFER_BIT);

theta += 0.1,

gl.uniform1f(thetaloc, theta);
gl.drawArrays(gl. TRIANGLE_STRIP, 0, 4);
render();

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

*l. Vertex Shader

he Universily ol New Mexico

attribute vec4 vPosition;
uniform float theta;

void main()

{
gl_Position.x = -sin(theta) * vPosition.x + cos(theta) * vPosition.y;
gl_Position.y = sin(theta) * vPosition.y + cos(theta) * vPosition.x;
gl _Position.z = 0.0;
gl_Position.w = 1.0;

¥

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 25

~ Double Buffering

 Although we are rendering the square, it
always into a buffer that is not displayed

* Browser uses double buffering
- Always display front buffer
- Rendering into back buffer
- Need a buffer swap

 Prevents display of a partial rendering

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 26

~#" Triggering a Buffer Swap

* Browsers refresh the display at ~60 Hz
- redisplay of front buffer
- not a buffer swap

* Trigger a buffer swap though an event

* TWo options for rotating square
- Interval timer
- requestAnimFrame

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 21

he Universily ol New Mexico

<~ Interval Timer

* Executes a function after a specified
number of milliseconds

- Also generates a buffer swap

setinterval(render, interval);

* Note an interval of O generates buffer
swaps as fast as possible

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

28

- requestAnimFrame

he Universily ol New Mexico

function render {

gl.clear(gl.COLOR_BUFFER_BIT);
theta += 0.1;

gl.uniform1f(thetalLoc, theta);

gl.drawArrays(gl. TRIANGLE_STRIP, 0, 4);
requestAnimFrame(render);

}

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

29

*l. Add an Interval

he Universily ol New Mexico

function render()
{
setTimeout(function() {
requestAnimFrame(render);
gl.clear(gl. COLOR_BUFFER_BIT);
theta += 0.1,
gl.uniform1f(thetaloc, theta);
gl.drawArrays(gl. TRIANGLE_STRIP, 0, 4);
}, 100);

¥

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

30

g+ [ntroduction to Computer
Graphics with WebGL

Ed Angel
Professor Emeritus of Computer Science

Founding Director, Arts, Research,
Technology and Science Laboratory

University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 31

Working with Callbacks

Ed Angel
Professor Emeritus of Computer Science
University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

32

he Universily ol New Mexico

- Objectives

 Learn to build interactive programs using
event listeners
- Buttons
- Menus
- Mouse
- Keyboard
- Reshape

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

33

he Universily ol New Mexico

- Adding a Button

e Let’'s add a button to control the rotation
direction for our rotating cube

* In the render function we can use a var
direction which is true or false to add or
subtract a constant to the angle

var direction = true; // global initialization

//'In render()

If(direction) theta +=0.1;
else theta -=0.1;

Angel and Shreiner: Tnteractive Computer Graphics 7E © Addison-Wesley 2015

*l. The Button

he Universily ol New Mexico

*In the HTML file

<button id=""DirectionButton">Change Rotation Direction

</button>
- Uses HTML button tag

- 1d gives an identifier we can use in JS file

- Text “Change Rotation Direction” displayed in
button

* Clicking on button generates a click event

* Note we are using default style and could
use CSS or JQuery to get a prettier button

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 35

he Universily ol New Mexico

*l. Button Event Listener

*We still need to define the listener
- no listener and the event occurs but is ignored

 Two forms for event listener in JS file

var myButton = document.getElementByld("DirectionButton™);

myButton.addEventListener("click", function() {
direction = Idirection;

};

document.getElementByld("DirectionButton™).onclick =
function() { direction = !direction; };

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 36

<~ onclick Variants

he Universily ol New Mexico

myButton.addEventListener("click", function() {
If (event.button == 0) { direction = !direction; }

3);

myButton.addEventListener("click", function() {
If (event.shiftkey == 0) { direction = !direction; }
3);

<button onclick="direction = !direction'></button>

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

37

