
1

Introduction to Computer

Graphics with WebGL

Ed Angel

Professor Emeritus of Computer Science

Founding Director, Arts, Research,

Technology and Science Laboratory

University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Programming with WebGL

Part 5: More GLSL

Ed Angel

Professor Emeritus of Computer Science

University of New Mexico

2Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Objectives

•Coupling shaders to applications

- Reading

- Compiling

- Linking

•Vertex Attributes

•Setting up uniform variables

•Example applications

3Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Linking Shaders with Application

•Read shaders

•Compile shaders

•Create a program object

•Link everything together

•Link variables in application with variables

in shaders

- Vertex attributes

- Uniform variables

4Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Program Object

•Container for shaders

- Can contain multiple shaders

- Other GLSL functions

var program = gl.createProgram();

gl.attachShader(program, vertShdr);

gl.attachShader(program, fragShdr);

gl.linkProgram(program);

5Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Reading a Shader

•Shaders are added to the program object

and compiled

•Usual method of passing a shader is as a

null-terminated string using the function

• gl.shaderSource(fragShdr, fragElem.text);

• If shader is in HTML file, we can get it into
application by getElementById method

• If the shader is in a file, we can write a

reader to convert the file to a string
6Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Adding a Vertex Shader

var vertShdr;

var vertElem =

document.getElementById(vertexShaderId);

vertShdr = gl.createShader(gl.VERTEX_SHADER);

gl.shaderSource(vertShdr, vertElem.text);

gl.compileShader(vertShdr);

// after program object created

gl.attachShader(program, vertShdr);
7Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Shader Reader

•Following code may be a security issue

with some browsers if you try to run it

locally

- Cross Origin Request

8

function getShader(gl, shaderName, type) {

var shader = gl.createShader(type);

shaderScript = loadFileAJAX(shaderName);

if (!shaderScript) {

alert("Could not find shader source:

"+shaderName);

}

}
Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Precision Declaration

• In GLSL for WebGL we must specify

desired precision in fragment shaders

- artifact inherited from OpenGL ES

- ES must run on very simple embedded devices

that may not support 32-bit floating point

- All implementations must support mediump

- No default for float in fragment shader

•Can use preprocessor directives (#ifdef)

to check if highp supported and, if not,

default to mediump
9Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Pass Through Fragment Shader

#ifdef GL_FRAGMENT_SHADER_PRECISION_HIGH

precision highp float;

#else

precision mediump float;

#endif

varying vec4 fcolor;

void main(void)

{

gl_FragColor = fcolor;

} 10Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

11

Introduction to Computer

Graphics with WebGL

Ed Angel

Professor Emeritus of Computer Science

Founding Director, Arts, Research,

Technology and Science Laboratory

University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

12

Programming with WebGL

Part 6: Three Dimensions

Ed Angel

Professor Emeritus of Computer Science

University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

13

Objectives

•Develop a more sophisticated three-

dimensional example

- Sierpinski gasket: a fractal

• Introduce hidden-surface removal

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

14

Three-dimensional Applications

• In WebGL, two-dimensional applications
are a special case of three-dimensional
graphics

•Going to 3D
- Not much changes

- Use vec3, gl.uniform3f

- Have to worry about the order in which
primitives are rendered or use hidden-surface
removal

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

15

Sierpinski Gasket (2D)

• Start with a triangle

•Connect bisectors of sides and remove central
triangle

•Repeat

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

16

Example

•Five subdivisions

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

17

The gasket as a fractal

•Consider the filled area (black) and the

perimeter (the length of all the lines around

the filled triangles)

•As we continue subdividing

- the area goes to zero

- but the perimeter goes to infinity

•This is not an ordinary geometric object

- It is neither two- nor three-dimensional

• It is a fractal (fractional dimension) object

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Gasket Program

•HTML file

- Same as in other examples

- Pass through vertex shader

- Fragment shader sets color

- Read in JS file

18Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

19

Gasket Program

var points = [];

var NumTimesToSubdivide = 5;

/* initial triangle */

var vertices = [

vec2(-1, -1),

vec2(0, 1),

vec2(1, -1)

];

divideTriangle(vertices[0],vertices[1],

vertices[2], NumTimesToSubdivide);

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

20

Draw one triangle

/* display one triangle */

function triangle(a, b, c){

points.push(a, b, c);

}

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

21

Triangle Subdivision

function divideTriangle(a, b, c, count){

// check for end of recursion

if (count === 0) {

triangle(a, b, c);

}

else {

//bisect the sides

var ab = mix(a, b, 0.5);

var ac = mix(a, c, 0.5);

var bc = mix(b, c, 0.5);

--count;

// three new triangles

divideTriangle(a, ab, ac, count-1);

divideTriangle(c, ac, bc, count-1);

divideTriangle(b, bc, ab, count-1);

}

}

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

22

init()

var program = initShaders(gl, "vertex-

shader", "fragment-shader");

gl.useProgram(program);

var bufferId = gl.createBuffer();

gl.bindBuffer(gl.ARRAY_BUFFER, bufferId)

gl.bufferData(gl.ARRAY_BUFFER,

flatten(points), gl.STATIC_DRAW);

var vPosition = gl.getAttribLocation(

program, "vPosition");

gl.vertexAttribPointer(vPosition, 2,

gl.FLOAT, false, 0, 0);

gl.enableVertexAttribArray(vPosition);

render();

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

23

Render Function

function render(){
gl.clear(gl.COLOR_BUFFER_BIT);
gl.drawArrays(gl.TRIANGLES, 0, points.length

);
}

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

24

Introduction to Computer

Graphics with WebGL

Ed Angel

Professor Emeritus of Computer Science

Founding Director, Arts, Research,

Technology and Science Laboratory

University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

25

Programming with WebGL

Part 6: Three Dimensions

Ed Angel

Professor Emeritus of Computer Science

University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

26

Moving to 3D

•We can easily make the program three-

dimensional by using three dimensional

points and starting with a tetrahedron

var vertices = [

vec3(0.0000, 0.0000, -1.0000),

vec3(0.0000, 0.9428, 0.3333),

vec3(-0.8165, -0.4714, 0.3333),

vec3(0.8165, -0.4714, 0.3333)];

subdivide each face

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

27

3D Gasket

•We can subdivide each of the four faces

•Appears as if we remove a solid

tetrahedron from the center leaving four

smaller tetrahedra

•Code almost identical to 2D example
Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

28

Almost Correct

• Because the triangles are drawn in the order

they are specified in the program, the front

triangles are not always rendered in front of

triangles behind them

get this

want this

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

29

Hidden-Surface Removal

•We want to see only those surfaces in front of

other surfaces

•OpenGL uses a hidden-surface method called

the z-buffer algorithm that saves depth

information as objects are rendered so that only

the front objects appear in the image

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

30

Using the z-buffer algorithm

• The algorithm uses an extra buffer, the z-buffer, to store
depth information as geometry travels down the pipeline

•Depth buffer is required to be available in WebGL

• It must be

- Enabled
•gl.enable(gl.DEPTH_TEST)

- Cleared in for each render
•gl.clear(gl.COLOR_BUFFER_BIT | gl.DEPTH_BUFFER_BIT)

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

31

Surface vs Volume Subdvision

• In our example, we divided the surface of
each face

•We could also divide the volume using the
same midpoints

•The midpoints define four smaller
tetrahedrons, one for each vertex

•Keeping only these tetrahedrons removes
a volume in the middle

•See text for code

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

32

Volume Subdivision

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

33

Introduction to Computer

Graphics with WebGL

Ed Angel

Professor Emeritus of Computer Science

Founding Director, Arts, Research,

Technology and Science Laboratory

University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Incremental and

Quaternion Rotation

Ed Angel

Professor Emeritus of Computer Science

University of New Mexico

34Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

35

Objectives

•This is an optional lecture that

- Illustrates the difference between using

direction angles and Euler angles

- Considers issues with incremental rotation

- Introduces quaternions as an alternate to

rotation matrices

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Specifying a Rotation

•Pre 3.1 OpenGL had a function glRotate

(theta, dx, dy dz) which incrementally

changed the current rotation matrix by a

rotation with fixed point of the origin about

a vector in the direction (dx, dy, dz)

•We implemented rotate in MV.js

• Implementations of Rotate often

decompose the general rotation into a

sequence of rotations about the

coordinate axes as in Chapter 4.
36Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Euler from Direction Angles

37

R Rx x Ry y Rz z Ry y Rx x

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Efficiency

38

R Rx x Ry y Rz z Ry y Rx x

R Rx x Ry y Rz z

should be able to write as

If we knew the angles, we could use RotateX, RotateY

and RotateZ from mat.h

But is this an efficient method?

No, we can do better with quaterions

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Incremental Rotation

39

R(t dt) R t Rz z Ry y Rx x

where x, y and z are small angles

For small angles

sin

cos 1

Rz z Ry y Rx x

1 z y 0

 z 1 x 0

 y x 1 0

0 0 0 1

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Great Circles

40Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Rotation and Great Circles

•Shortest path between two points on a

sphere is the great circle passing through

the two points

•Corresponding to each great circle is

vector normal to the circle

•Rotation about this vector carries us from

the first point to the second

41Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Quaternion Rotation

42

a
0

q ,
1

q ,
2

q ,
3

q 0
q ,q

ab
0a 0b ,ab

ab
0a 0b a•b,

0a b+
0b a+ab

2

a
0

2

q ,q•q

1
a

1
2

a
0

q ,-q

p 0,p

r cos

2
,sin

2
v

p' rp 1r

Definition:

Quaternian Arithmetic:

Representing a 3D point:

Representing a Rotation:

Rotating a Point:

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Looking at the North Star

43

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

At North Pole

44

90o

?

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Gimbal Lock

•Suppose you rotate about the y axis by 90o

•This action removes a degree of freedom

45

Rz z Ry y Rx x

0 sin(x z) cos(x z) 0

0 cos(x z) sin(x z) 0

1 0 0 0

0 0 0 1

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Quaternions and

Computer Graphics

• (Re)discovered by both aerospace and

animation communities

•Used for head mounted display in virtual

and augmented reality

•Used for smooth camera paths

•Caveat: quaternions do not preserve up

direction

46Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Working with Quaternians

•Quaternion arithmetic works well for

representing rotations around the origin

•There is no simple way to convert a

quaternion to a matrix representation

•Usually copy elements back and forth

between quaternions and matrices

•Can use directly without rotation matrices

in the virtual trackball

•Quaternion shaders are simple
47Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

