g+ [ntroduction to Computer
Graphics with WebGL

Ed Angel
Professor Emeritus of Computer Science

Founding Director, Arts, Research,
Technology and Science Laboratory

University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

4.“\
The Umiversily ol New Mexico

Programming with WebGL
Part 3: Shaders

Ed Angel
Professor of Emeritus of Computer Science
University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 2

he Universily ol New Mexico

- Objectives

* Simple Shaders
- Vertex shader
- Fragment shaders

* Programming shaders with GLSL
* Finish first program

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

he Universily ol New Mexico

<" Vertex Shader Applications

* Moving vertices
- Morphing
- Wave motion
- Fractals
e Lighting
- More realistic models
- Cartoon shaders

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

*l. Fragment Shader Applications

he Universily ol New Mexico

Per fragment lighting calculations

per vertex lighting per fragment lighting

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 5

<~#" Fragment Shader Applications

Texture mapping

smooth shading environment bump mapping
mapping

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 6

K Writing Shaders

* First programmable shaders were
programmed in an assembly-like manner

* OpenGL extensions added functions for
vertex and fragment shaders

*Cg (C for graphics) C-like language for
programming shaders
- Works with both OpenGL and DirectX
- Interface to OpenGL complex

* OpenGL Shading Language (GLSL)

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

The Umiversily ol New Mexico

* OpenGL Shading Language
« Part of OpenGL 2.0 and up
* High level C-like language

* New data types
- Matrices
- Vectors
- Samplers

* As of OpenGL 3.1, application must
provide shaders

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

he Universily ol New Mexico

- Simple Vertex Shader

input from application

attribute vec4 vPosition;
void main (VOid) \ must link to variable in application

{

gl_Position = vPosition;
} \

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

built in variable

~ Execution Model

The Umiversily ol New Mexico

\Vertex data

Shader Program\-

gl.drawArrays \ertex

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 10

~#" Simple Fragment Program

precision mediump float;
void main(void)

{
gl_FragColor = vec4(1.0, 0.0, 0.0, 1.0);

}

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

11

~ Execution Model

The Umiversily ol New Mexico

Shader Program

Fragment Fragment

Color
Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 12

g+ [ntroduction to Computer
Graphics with WebGL

Ed Angel
Professor Emeritus of Computer Science

Founding Director, Arts, Research,
Technology and Science Laboratory

University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 13

4.“\
The Umiversily ol New Mexico

Programming with WebGL
Part 3: Shaders

Ed Angel
Professor of Emeritus of Computer Science
University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 14

- Data Types

* C types: int, float, bool

*\Vectors:
- float vec2, vec3, vec4
- Also int (ivec) and boolean (bvec)
* Matrices: mat2, mat3, mat4
- Stored by columns
- Standard referencing m[row][column]

« C++ style constructors
- vec3 a =vec3(1.0, 2.0, 3.0)
-vec2 b = vec2(a)

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

15

- No Pointers

* There are no pointers in GLSL
*We can use C structs which
can be copied back from functions

* Because matrices and vectors are basic
types they can be passed into and output
from GLSL functions, e.g.

mat3 func(mat3 a)
e variables passed by copying

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

16

- Qualifiers

he Universily ol New Mexico

« GLSL has many of the same qualifiers such as
const as C/C++

* Need others due to the nature of the execution
model

 Variables can change
- Once per primitive
- Once per vertex
- Once per fragment
- At any time in the application

 Vertex attributes are interpolated by the
rasterizer into fragment attributes

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 1

- Attribute Qualifier

he Universily ol New Mexico

* Attribute-qualified variables can change at
most once per vertex

T
0

nere are a few built in variables such as
_Position but most have been deprecated

oL

ser defined (in application program)

—attribute float temperature

—attribute vec3 velocity
- recent versions of GLSL use in and out

gualifiers to get to and from shaders

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 18

he Universily ol New Mexico

- Uniform Qualified

* \Variables that are constant for an entire
primitive

« Can be changed in application and sent to
shaders

« Cannot be changed in shader

* Used to pass information to shader such
as the time or a bounding box of a
primitive or transformation matrices

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 19

he Universily ol New Mexico

- Varying Qualified

 Variables that are passed from vertex shader
to fragment shader

* Automatically interpolated by the rasterizer

* With WebGL, GLSL uses the varying qualifier
In both shaders
varying vec4 color;

 More recent versions of WebGL use out In
vertex shader and in in the fragment shader
out vec4d color; //vertex shader

in vecd4 color; // fragment shader
Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 20

<#" Our Naming Convention

e attributes passed to vertex shader have names
beginning with v (vPosition, vColor) in both the
application and the shader

- Note that these are different entities with the same
name

Varying variables begin with f (fColor) in both
shaders

- must have same name

* Uniform variables are unadorned and can have
the same name In application and shaders

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 21

~#" Example: Vertex Shader

attribute vec4 vColor;
varying vec4 fColor; //out vec4 fColor;

void main()

{

gl_Position = vPosition;
fColor = vColor;

}

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

22

.~ Corresponding Fragment
= |

precision mediump float;

varying vec4 fColor; //in vec4 fColor;
void main()

{
gl _FragColor = fColor;

}

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

23

Sending Colors from
-~ o
The Umiversily ol Ne i A p p I I C atl O n

var cBuffer = gl.createBuffer();

gl.bindBuffer(g. ARRAY_ BUFFER, cBuffer);

gl.bufferData(gl. ARRAY_ BUFFER, flatten(colors),
gl.STATIC DRAW);

var vColor = gl.getAttribLocation(program, "'vColor");
gl.vertexAttribPointer(vColor, 3, gl.FLOAT, false, 0, 0);
gl.enableVertexAttribArray(vColor);

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 24

~#" Sending a Uniform Variable

// In application

vec4 color = vec4(1.0, 0.0, 0.0, 1.0);

colorLoc = gl.getUniformLocation(program, ”color");
gl.uniform4f(colorLoc, color);

// In fragment shader (similar in vertex shader)
uniform vec4 color;
vold main()

{

gl_FragColor = color;

}

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 25

~#8" Operators and Functions

« Standard C functions
- Trigonometric
- Arithmetic
- Normalize, reflect, length

* Overloading of vector and matrix types

mat4 a;

vec4 b, c, d;

c = b*a; // a column vector stored as a 1d array
d = a*b; // a row vector stored as a 1d array

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 26

he Universily ol New Mexico

~®" Swizzling and Selection

« Can refer to array elements by element
using [] or selection (.) operator with
-X Y, 4, W
-1, 9, b, a
-5, 4,p,Q
-a[2], a.b, a.z, a.parethe same
* Swizzling operator lets us manipulate
components
vecd a, b;
a.yz = vec2(1.0, 2.0, 3.0, 4.0);

b = a.yxzw;
Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

27

g+ [ntroduction to Computer
Graphics with WebGL

Ed Angel
Professor Emeritus of Computer Science

Founding Director, Arts, Research,
Technology and Science Laboratory

University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 28

4.“\
The Umiversily ol New Mexico

Programming with WebGL
Part 4: Color and Attributes

Ed Angel
Professor of Emeritus of Computer Science
University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 29

he Universily ol New Mexico

- Objectives
* Expanding primitive set

* Adding color
*\Vertex attributes

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

30

~ WebGLPrimitives

The Umiversily ol New Mexico

GL_PO£§TS ‘///2\\ S?

GL LINES GL LINE_STRIP

A\ GL_LINE LOOP

GL_ TRIANGLES -

GL _TRIANGLE STRIP GL_TRIANGLE_FAN

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

31

~ Polygon Issues

mversily ol New Mexico

* WebGL will only display triangles
- Simple: edges cannot cross

- Convex: All points on line segment between two points in a
polygon are also in the polygon

- Flat: all vertices are in the same plane

* Application program must tessellate a polygon into
triangles (triangulation)

* OpenGL 4.1 contains a tessellator but not

-

nonsimple polygon
Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 32

ebGL

nonconvex polygon

~ Polygon Testing

« Conceptually simple to test for simplicity
and convexity

* Time consuming

 Earlier versions assumed both and left
testing to the application

* Present version only renders triangles

* Need algorithm to triangulate an arbitrary
polygon

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 33

he Universily ol New Mexico

~&" Good and Bad Triangles

 Long thin triangles render badly

* Equilateral triangles render well
* Maximize minimum angle
* Delaunay triangulation for unstructured points

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 34

~ Triangularization

he Universily ol New Mexico

*Convex polygon d

C

a

e Start with abc, remove b, then acd,

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

35

~#" Non-convex (concave)

The Umiversily ol New Mexico

Vit

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

36

<~ Recursive Division

I'he Universily ol New Mexico

* Find leftmost vertex and split

Yi-1

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

37

- Attributes

* Attributes determine the appearance of objects
- Color (points, lines, polygons)
- Size and width (points, lines)
- Stipple pattern (lines, polygons)
- Polygon mode
Display as filled: solid color or stipple pattern
Display edges
Display vertices
*Only a few (gl _PointSize) are supported by
WebGL functions

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 38

*l. RGB color

I'he Universily ol New Mexico

« Each color component is stored separately in
the frame buffer

» Usually 8 bits per component in buffer

* Color values can range from 0.0 (none) to 1.0
(all) using floats or over the range from 0O to 255
using unsigned bytes

I_I—

ﬁ__

Frame buffer

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 39

*l. Indexed Color

he Universily ol New Mexico

* Colors are indices into tables of RGB values

* Requires less memory
- Indices usually 8 bits

- not as important now
Memory inexpensive
Need more colors for shading

Color- Red _
S lookup table "
Color- Green
lookup table H
H - Color- Blue
Frame buffer lookup table

T

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 40

*l. Smooth Color

mversily ol New Mexico

 Default is smooth shading

- Rasterizer interpolates vertex colors across
visible polygons

* Alternative is flat shading
- Color of first vertex
determines fill color
- Handle in shader

&2 colorcube

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 41

he Universily ol New Mexico

- Setting Colors

 Colors are ultimately set in the fragment
shader but can be determined in either
shader or in the application

* Application color: pass to vertex shader
as a uniform variable or as a vertex
attribute

*Vertex shader color: pass to fragment
shader as varying variable

* Fragment color: can alter via shader code

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 42

