
1

Introduction to Computer

Graphics with WebGL

Ed Angel

Professor Emeritus of Computer Science

Founding Director, Arts, Research,

Technology and Science Laboratory

University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Programming with WebGL

Part 3: Shaders

Ed Angel

Professor of Emeritus of Computer Science

University of New Mexico

2Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

3

Objectives

•Simple Shaders

- Vertex shader

- Fragment shaders

•Programming shaders with GLSL

•Finish first program

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

4

Vertex Shader Applications

•Moving vertices

- Morphing

- Wave motion

- Fractals

•Lighting

- More realistic models

- Cartoon shaders

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

5

Fragment Shader Applications

Per fragment lighting calculations

per vertex lighting per fragment lighting

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

6

Fragment Shader Applications

Texture mapping

smooth shading environment

mapping

bump mapping

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

7

Writing Shaders

•First programmable shaders were

programmed in an assembly-like manner

•OpenGL extensions added functions for

vertex and fragment shaders

•Cg (C for graphics) C-like language for

programming shaders

- Works with both OpenGL and DirectX

- Interface to OpenGL complex

•OpenGL Shading Language (GLSL)

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

8

GLSL

•OpenGL Shading Language

•Part of OpenGL 2.0 and up

•High level C-like language

•New data types
- Matrices

- Vectors

- Samplers

•As of OpenGL 3.1, application must
provide shaders

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

9

Simple Vertex Shader

attribute vec4 vPosition;

void main(void)

{

gl_Position = vPosition;

}

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

10

Execution Model

Vertex

Shader

GPU

Primitive

Assembly
Application

Program

gl.drawArrays Vertex

Vertex data

Shader Program

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

11

Simple Fragment Program

precision mediump float;

void main(void)

{

gl_FragColor = vec4(1.0, 0.0, 0.0, 1.0);

}

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

12

Execution Model

Fragment

Shader

Application

Frame

BufferRasterizer

Fragment Fragment

Color

Shader Program

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

13

Introduction to Computer

Graphics with WebGL

Ed Angel

Professor Emeritus of Computer Science

Founding Director, Arts, Research,

Technology and Science Laboratory

University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Programming with WebGL

Part 3: Shaders

Ed Angel

Professor of Emeritus of Computer Science

University of New Mexico

14Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

15

Data Types

•C types: int, float, bool

•Vectors:
- float vec2, vec3, vec4

- Also int (ivec) and boolean (bvec)

•Matrices: mat2, mat3, mat4
- Stored by columns

- Standard referencing m[row][column]

•C++ style constructors
- vec3 a =vec3(1.0, 2.0, 3.0)

- vec2 b = vec2(a)

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

16

No Pointers

•There are no pointers in GLSL

•We can use C structs which

can be copied back from functions

•Because matrices and vectors are basic

types they can be passed into and output

from GLSL functions, e.g.

mat3 func(mat3 a)

• variables passed by copying

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

17

Qualifiers

• GLSL has many of the same qualifiers such as
const as C/C++

• Need others due to the nature of the execution
model

• Variables can change
- Once per primitive

- Once per vertex

- Once per fragment

- At any time in the application

• Vertex attributes are interpolated by the
rasterizer into fragment attributes

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

18

Attribute Qualifier

•Attribute-qualified variables can change at

most once per vertex

•There are a few built in variables such as

gl_Position but most have been deprecated

•User defined (in application program)
-attribute float temperature

-attribute vec3 velocity

- recent versions of GLSL use in and out

qualifiers to get to and from shaders

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

19

Uniform Qualified

•Variables that are constant for an entire

primitive

•Can be changed in application and sent to
shaders

•Cannot be changed in shader

•Used to pass information to shader such

as the time or a bounding box of a

primitive or transformation matrices

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

20

Varying Qualified

•Variables that are passed from vertex shader

to fragment shader

•Automatically interpolated by the rasterizer

•With WebGL, GLSL uses the varying qualifier

in both shaders
varying vec4 color;

•More recent versions of WebGL use out in

vertex shader and in in the fragment shader
out vec4 color; //vertex shader

in vec4 color; // fragment shader
Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Our Naming Convention

•attributes passed to vertex shader have names

beginning with v (vPosition, vColor) in both the

application and the shader

- Note that these are different entities with the same

name

•Varying variables begin with f (fColor) in both

shaders

- must have same name

•Uniform variables are unadorned and can have

the same name in application and shaders
21Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

22

Example: Vertex Shader

attribute vec4 vColor;

varying vec4 fColor; //out vec4 fColor;

void main()

{

gl_Position = vPosition;

fColor = vColor;

}

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

23

Corresponding Fragment

Shader

precision mediump float;

varying vec4 fColor; //in vec4 fColor;

void main()

{

gl_FragColor = fColor;

}

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Sending Colors from

Application

24

var cBuffer = gl.createBuffer();

gl.bindBuffer(gl.ARRAY_BUFFER, cBuffer);

gl.bufferData(gl.ARRAY_BUFFER, flatten(colors),

gl.STATIC_DRAW);

var vColor = gl.getAttribLocation(program, "vColor");

gl.vertexAttribPointer(vColor, 3, gl.FLOAT, false, 0, 0);

gl.enableVertexAttribArray(vColor);

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Sending a Uniform Variable

25

// in application

vec4 color = vec4(1.0, 0.0, 0.0, 1.0);

colorLoc = gl.getUniformLocation(program, ”color");

gl.uniform4f(colorLoc, color);

// in fragment shader (similar in vertex shader)

uniform vec4 color;

void main()

{

gl_FragColor = color;

}
Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

26

Operators and Functions

•Standard C functions

- Trigonometric

- Arithmetic

- Normalize, reflect, length

•Overloading of vector and matrix types

mat4 a;

vec4 b, c, d;

c = b*a; // a column vector stored as a 1d array

d = a*b; // a row vector stored as a 1d array

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

27

Swizzling and Selection

•Can refer to array elements by element
using [] or selection (.) operator with

- x, y, z, w

- r, g, b, a

- s, t, p, q

-a[2], a.b, a.z, a.p are the same

•Swizzling operator lets us manipulate
components
vec4 a, b;

a.yz = vec2(1.0, 2.0, 3.0, 4.0);

b = a.yxzw;
Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

28

Introduction to Computer

Graphics with WebGL

Ed Angel

Professor Emeritus of Computer Science

Founding Director, Arts, Research,

Technology and Science Laboratory

University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

29

Programming with WebGL

Part 4: Color and Attributes

Ed Angel

Professor of Emeritus of Computer Science

University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

30

Objectives

•Expanding primitive set

•Adding color

•Vertex attributes

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

31

WebGLPrimitives

GL_TRIANGLE_STRIP GL_TRIANGLE_FAN

GL_POINTS

GL_LINES

GL_LINE_LOOP

GL_LINE_STRIP

GL_TRIANGLES

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

32

Polygon Issues

• WebGL will only display triangles

- Simple: edges cannot cross

- Convex: All points on line segment between two points in a

polygon are also in the polygon

- Flat: all vertices are in the same plane

• Application program must tessellate a polygon into

triangles (triangulation)

• OpenGL 4.1 contains a tessellator but not WebGL

nonsimple polygon
nonconvex polygon

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Polygon Testing

•Conceptually simple to test for simplicity

and convexity

•Time consuming

•Earlier versions assumed both and left

testing to the application

•Present version only renders triangles

•Need algorithm to triangulate an arbitrary

polygon

33Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Good and Bad Triangles

•Long thin triangles render badly

•Equilateral triangles render well

•Maximize minimum angle

•Delaunay triangulation for unstructured points

34Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Triangularization

•Convex polygon

•Start with abc, remove b, then acd, ….

35

a

c

b

d

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Non-convex (concave)

36Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Recursive Division

•Find leftmost vertex and split

37Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

38

Attributes

•Attributes determine the appearance of objects

- Color (points, lines, polygons)

- Size and width (points, lines)

- Stipple pattern (lines, polygons)

- Polygon mode

• Display as filled: solid color or stipple pattern

• Display edges

• Display vertices

•Only a few (gl_PointSize) are supported by

WebGL functions
Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

39

RGB color

• Each color component is stored separately in

the frame buffer

• Usually 8 bits per component in buffer

• Color values can range from 0.0 (none) to 1.0

(all) using floats or over the range from 0 to 255

using unsigned bytes

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

40

Indexed Color

•Colors are indices into tables of RGB values

•Requires less memory

- indices usually 8 bits

- not as important now
• Memory inexpensive

• Need more colors for shading

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

41

Smooth Color

• Default is smooth shading

- Rasterizer interpolates vertex colors across

visible polygons

• Alternative is flat shading

- Color of first vertex

determines fill color

- Handle in shader

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Setting Colors

•Colors are ultimately set in the fragment

shader but can be determined in either

shader or in the application

•Application color: pass to vertex shader

as a uniform variable or as a vertex

attribute

•Vertex shader color: pass to fragment

shader as varying variable

•Fragment color: can alter via shader code

42Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

