
1

Introduction to Computer

Graphics with WebGL

Ed Angel

Professor Emeritus of Computer Science

Founding Director, Arts, Research,

Technology and Science Laboratory

University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

2

Models and Architectures

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

3

Objectives

•Learn the basic design of a graphics

system

• Introduce pipeline architecture

•Examine software components for an

interactive graphics system

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

4

Image Formation Revisited

•Can we mimic the synthetic camera

model to design graphics hardware

software?

•Application Programmer Interface (API)

- Need only specify
• Objects

• Materials

• Viewer

• Lights

•But how is the API implemented?

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

5

Physical Approaches

• Ray tracing: follow rays of light from center of
projection until they either are absorbed by
objects or go off to infinity

- Can handle global effects
• Multiple reflections

• Translucent objects

- Slow

- Must have whole data base

available at all times

• Radiosity: Energy based approach
- Very slow

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

6

Practical Approach

•Process objects one at a time in the order
they are generated by the application

- Can consider only local lighting

•Pipeline architecture

•All steps can be implemented in hardware
on the graphics card

application

program
display

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

7

Vertex Processing

• Much of the work in the pipeline is in converting

object representations from one coordinate

system to another

- Object coordinates

- Camera (eye) coordinates

- Screen coordinates

• Every change of coordinates is equivalent to a

matrix transformation

• Vertex processor also computes vertex colors

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

8

Projection

•Projection is the process that combines

the 3D viewer with the 3D objects to

produce the 2D image

- Perspective projections: all projectors meet at

the center of projection

- Parallel projection: projectors are parallel,

center of projection is replaced by a direction of

projection

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

9

Primitive Assembly

Vertices must be collected into geometric

objects before clipping and rasterization

can take place

- Line segments

- Polygons

- Curves and surfaces

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

10

Clipping

Just as a real camera cannot “see” the

whole world, the virtual camera can only

see part of the world or object space

- Objects that are not within this volume are said

to be clipped out of the scene

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

11

Rasterization

• If an object is not clipped out, the appropriate

pixels in the frame buffer must be assigned colors

• Rasterizer produces a set of fragments for each

object

• Fragments are “potential pixels”

- Have a location in frame bufffer

- Color and depth attributes

• Vertex attributes are interpolated over objects by

the rasterizer

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

12

Fragment Processing

•Fragments are processed to determine

the color of the corresponding pixel in the

frame buffer

•Colors can be determined by texture

mapping or interpolation of vertex colors

•Fragments may be blocked by other

fragments closer to the camera

- Hidden-surface removal

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

13

The Programmer’s Interface

•Programmer sees the graphics system

through a software interface: the

Application Programmer Interface (API)

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

14

API Contents

•Functions that specify what we need to

form an image

- Objects

- Viewer

- Light Source(s)

- Materials

•Other information

- Input from devices such as mouse and keyboard

- Capabilities of system

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

15

Object Specification

•Most APIs support a limited set of
primitives including

- Points (0D object)

- Line segments (1D objects)

- Polygons (2D objects)

- Some curves and surfaces

• Quadrics

• Parametric polynomials

•All are defined through locations in space
or vertices

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

16

Example (old style)

glBegin(GL_POLYGON)

glVertex3f(0.0, 0.0, 0.0);

glVertex3f(0.0, 1.0, 0.0);

glVertex3f(0.0, 0.0, 1.0);

glEnd();

type of object

location of vertex

end of object definition

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Example (GPU based)

17

var points = [

vec3(0.0, 0.0, 0.0),

vec3(0.0, 1.0, 0.0),

vec3(0.0, 0.0, 1.0),

];

•Put geometric data in an array

•Send array to GPU

•Tell GPU to render as triangle

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

18

Camera Specification

•Six degrees of freedom

- Position of center of lens

- Orientation

•Lens

•Film size

•Orientation of film plane

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

19

Lights and Materials

•Types of lights
- Point sources vs distributed sources

- Spot lights

- Near and far sources

- Color properties

•Material properties
- Absorption: color properties

- Scattering

• Diffuse

• Specular

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

20

Introduction to Computer

Graphics with WebGL

Ed Angel

Professor Emeritus of Computer Science

Founding Director, Arts, Research,

Technology and Science Laboratory

University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

21

Programming with WebGL

Part 1: Background

Ed Angel

Professor Emeritus of Computer Science

University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

22

Objectives

•Development of the OpenGL API

•OpenGL Architecture

- OpenGL as a state machine

- OpenGL as a data flow machine

•Functions

- Types

- Formats

•Simple program

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

23

Early History of APIs

• IFIPS (1973) formed two committees to

come up with a standard graphics API

- Graphical Kernel System (GKS)
• 2D but contained good workstation model

- Core
• Both 2D and 3D

- GKS adopted as IS0 and later ANSI standard

(1980s)

•GKS not easily extended to 3D (GKS-3D)

- Far behind hardware development

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

24

PHIGS and X

•Programmers Hierarchical Graphics
System (PHIGS)

- Arose from CAD community

- Database model with retained graphics
(structures)

•X Window System
- DEC/MIT effort

- Client-server architecture with graphics

•PEX combined the two
- Not easy to use (all the defects of each)

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

25

SGI and GL

•Silicon Graphics (SGI) revolutionized the

graphics workstation by implementing the

pipeline in hardware (1982)

•To access the system, application

programmers used a library called GL

•With GL, it was relatively simple to

program three dimensional interactive

applications

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

26

OpenGL

The success of GL lead to OpenGL (1992),

a platform-independent API that was

- Easy to use

- Close enough to the hardware to get excellent

performance

- Focus on rendering

- Omitted windowing and input to avoid window

system dependencies

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

27

OpenGL Evolution

• Originally controlled by an Architectural Review

Board (ARB)

- Members included SGI, Microsoft, Nvidia, HP,

3DLabs, IBM,…….

- Now Kronos Group

- Was relatively stable (through version 2.5)
• Backward compatible

• Evolution reflected new hardware capabilities

– 3D texture mapping and texture objects

– Vertex and fragment programs

- Allows platform specific features through extensions

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Modern OpenGL

•Performance is achieved by using GPU

rather than CPU

•Control GPU through programs called

shaders

•Application’s job is to send data to GPU

•GPU does all rendering

28Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Immediate Mode Graphics

•Geometry specified by vertices

- Locations in space(2 or 3 dimensional)

- Points, lines, circles, polygons, curves, surfaces

• Immediate mode

- Each time a vertex is specified in application, its

location is sent to the GPU

- Old style uses glVertex

- Creates bottleneck between CPU and GPU

- Removed from OpenGL 3.1 and OpenGL ES 2.0

29Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Retained Mode Graphics

•Put all vertex attribute data in array

•Send array to GPU to be rendered

immediately

•Almost OK but problem is we would have

to send array over each time we need

another render of it

•Better to send array over and store on

GPU for multiple renderings

30Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

OpenGL 3.1

•Totally shader-based

- No default shaders

- Each application must provide both a vertex

and a fragment shader

•No immediate mode

•Few state variables

•Most 2.5 functions deprecated

•Backward compatibility not required

- Exists a compatibility extension

31Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Other Versions

•OpenGL ES

- Embedded systems

- Version 1.0 simplified OpenGL 2.1

- Version 2.0 simplified OpenGL 3.1
• Shader based

•WebGL

- Javascript implementation of ES 2.0

- Supported on newer browsers

•OpenGL 4.1, 4.2, …..

- Add geometry, tessellation, compute shaders
32Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

33

Introduction to Computer

Graphics with WebGL

Ed Angel

Professor Emeritus of Computer Science

Founding Director, Arts, Research,

Technology and Science Laboratory

University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

34

Programming with WebGL

Part 1: Background

Ed Angel

Professor Emeritus of Computer Science

University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

35

OpenGL Architecture

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

36

Software Organization

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

37

A OpenGL Simple Program

Generate a square on a solid background

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

It used to be easy

38

#include <GL/glut.h>

void mydisplay(){

glClear(GL_COLOR_BUFFER_BIT);

glBegin(GL_QUAD;

glVertex2f(-0.5, -0.5);

glVertex2f(-0,5, 0,5);

glVertex2f(0.5, 0.5);

glVertex2f(0.5, -0.5);

glEnd()

}

int main(int argc, char** argv){

glutCreateWindow("simple");

glutDisplayFunc(mydisplay);

glutMainLoop();

}

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

39

What happened?

•Most OpenGL functions deprecated

- immediate vs retained mode

- make use of GPU

•Makes heavy use of state variable default

values that no longer exist

- Viewing

- Colors

- Window parameters

•However, processing loop is the same

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Execution in Browser

40Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

41

Event Loop

•Remember that the sample program

specifies a render function which is a
event listener or callback function

- Every program should have a render callback

- For a static application we need only execute

the render function once

- In a dynamic application, the render function

can call itself recursively but each redrawing of

the display must be triggered by an event

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

42

Lack of Object Orientation

•All versions of OpenGL are not object

oriented so that there are multiple functions

for a given logical function

•Example: sending values to shaders

-gl.uniform3f

-gl.uniform2i

-gl.uniform3dv

•Underlying storage mode is the same

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

43

WebGL function format

gl.uniform3f(x,y,z)

belongs to WebGL canvas

function name

x,y,z are variables

gl.uniform3fv(p)

p is an array

dimension

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

44

WebGL constants

•Most constants are defined in the canvas

object

- In desktop OpenGL, they were in #include files
such as gl.h

•Examples
-desktop OpenGL

•glEnable(GL_DEPTH_TEST);

-WebGL

•gl.enable(gl.DEPTH_TEST)

-gl.clear(gl.COLOR_BUFFER_BIT)

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

WebGL and GLSL

•WebGL requires shaders and is based

less on a state machine model than a

data flow model

•Most state variables, attributes and

related pre 3.1 OpenGL functions have

been deprecated

•Action happens in shaders

•Job of application is to get data to GPU

45Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

GLSL

•OpenGL Shading Language

•C-like with

- Matrix and vector types (2, 3, 4 dimensional)

- Overloaded operators

- C++ like constructors

•Similar to Nvidia’s Cg and Microsoft HLSL

•Code sent to shaders as source code

•WebGL functions compile, link and get

information to shaders
46Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Programming with OpenGL

Part 2: Complete Programs

Ed Angel

Professor of Emeritus of Computer Science

University of New Mexico

Objectives

•Build a complete first program

- Introduce shaders

- Introduce a standard program structure

•Simple viewing

- Two-dimensional viewing as a special case of

three-dimensional viewing

• Initialization steps and program structure

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Square Program

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

WebGL

•Five steps

- Describe page (HTML file)
• request WebGL Canvas

• read in necessary files

- Define shaders (HTML file)
• could be done with a separate file (browser dependent)

- Compute or specify data (JS file)

- Send data to GPU (JS file)

- Render data (JS file)

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

square.html

<!DOCTYPE html>

<html>

<head>

<script id="vertex-shader" type="x-shader/x-vertex">

attribute vec4 vPosition;

void main()

{

gl_Position = vPosition;

}

</script>

<script id="fragment-shader" type="x-shader/x-fragment">

precision mediump float;

void main()

{

gl_FragColor = vec4(1.0, 1.0, 1.0, 1.0);

}

</script>Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Shaders

•We assign names to the shaders that we

can use in the JS file

•These are trivial pass-through (do

nothing) shaders that which set the two

required built-in variables

- gl_Position

- gl_FragColor

•Note both shaders are full programs

•Note vector type vec2

•Must set precision in fragment shaderAngel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

square.html (cont)

<script type="text/javascript" src="../Common/webgl-utils.js"></script>

<script type="text/javascript" src="../Common/initShaders.js"></script>

<script type="text/javascript" src="../Common/MV.js"></script>

<script type="text/javascript" src="square.js"></script>

</head>

<body>

<canvas id="gl-canvas" width="512" height="512">

Oops ... your browser doesn't support the HTML5 canvas element

</canvas>

</body>

</html>

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Files

•../Common/webgl-utils.js: Standard

utilities for setting up WebGL context in

Common directory on website

•../Common/initShaders.js: contains

JS and WebGL code for reading, compiling

and linking the shaders

•../Common/MV.js: our matrix-vector

package

•square.js: the application file

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

square.js

var gl;

var points;

window.onload = function init(){

var canvas = document.getElementById("gl-canvas");

gl = WebGLUtils.setupWebGL(canvas);

if (!gl) { alert("WebGL isn't available");

}

// Four Vertices

var vertices = [

vec2(-0.5, -0.5),

vec2(-0.5, 0.5),

vec2(0.5, 0.5),

vec2(0.5, -0.5)

];

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Notes

•onload: determines where to start

execution when all code is loaded

•canvas gets WebGL context from HTML file

• vertices use vec2 type in MV.js

• JS array is not the same as a C or Java

array

- object with methods

- vertices.length // 4

•Values in clip coordinates

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

square.js (cont)

// Configure WebGL

gl.viewport(0, 0, canvas.width, canvas.height);

gl.clearColor(0.0, 0.0, 0.0, 1.0);

// Load shaders and initialize attribute buffers

var program = initShaders(gl, "vertex-shader", "fragment-shader"

);

gl.useProgram(program);

// Load the data into the GPU

var bufferId = gl.createBuffer();

gl.bindBuffer(gl.ARRAY_BUFFER, bufferId);

gl.bufferData(gl.ARRAY_BUFFER, flatten(vertices), gl.STATIC_DRAW

);

// Associate out shader variables with our data buffer

var vPosition = gl.getAttribLocation(program, "vPosition");

gl.vertexAttribPointer(vPosition, 2, gl.FLOAT, false, 0, 0);

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Notes

•initShaders used to load, compile and

link shaders to form a program object

• Load data onto GPU by creating a vertex

buffer object on the GPU

- Note use of flatten() to convert JS array to an

array of float32’s

•Finally we must connect variable in

program with variable in shader

- need name, type, location in buffer

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

square.js (cont)

render();

};

function render() {

gl.clear(gl.COLOR_BUFFER_BIT);

gl.drawArrays(gl.TRIANGLE_FAN, 0, 4);

}

0

1 2

3

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Triangles, Fans or Strips

gl.drawArrays(gl.TRIANGLES, 0, 6); // 0, 1, 2, 0, 2, 3

0

1 2

3

gl.drawArrays(gl.TRIANGLE_STRIP, 0, 4); // 0, 1, 3, 2

gl.drawArrays(gl.TRIANGLE_FAN, 0, 4); // 0, 1 , 2, 3

0

1 2

3

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Programming with OpenGL

Part 2: Complete Programs

Ed Angel

Professor of Emeritus of Computer Science

University of New Mexico

Objectives

•Build a complete first program

- Introduce shaders

- Introduce a standard program structure

•Simple viewing

- Two-dimensional viewing as a special case of

three-dimensional viewing

• Initialization steps and program structure

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Program Execution

•WebGL runs within the browser

- complex interaction among the operating

system, the window system, the browser and

your code (HTML and JS)

•Simple model

- Start with HTML file

- files read in asynchronously

- start with onload function
• event driven input

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Coordinate Systems

• The units in points are determined by the
application and are called object, world, model or
problem coordinates

• Viewing specifications usually are also in object
coordinates

• Eventually pixels will be produced in window
coordinates

• WebGL also uses some internal representations
that usually are not visible to the application but
are important in the shaders

• Most important is clip coordinates

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Coordinate Systems and Shaders

•Vertex shader must output in clip

coordinates

• Input to fragment shader from rasterizer is

in window coordinates

•Application can provide vertex data in any

coordinate system but shader must

eventually produce gl_Position in clip

coordinates

•Simple example uses clip coordinates

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

WebGL Camera

•WebGL places a camera at the origin in

object space pointing in the negative z

direction

•The default viewing volume

is a box centered at the

origin with sides of

length 2

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Orthographic Viewing

z=0

z=0

In the default orthographic view, points are

projected forward along the z axis onto the

plane z=0

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Viewports

•Do not have use the entire window for the
image: gl.viewport(x,y,w,h)

•Values in pixels (window coordinates)

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Transformations and Viewing

• In WebGL, we usually carry out projection using

a projection matrix (transformation) before

rasterization

• Transformation functions are also used for
changes in coordinate systems

• Pre 3.1 OpenGL had a set of transformation

functions which have been deprecated

• Three choices in WebGL

- Application code

- GLSL functions

- MV.js

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

First Assignment:

Tessellation and Twist

•Consider rotating a 2D point about the origin

•Now let amount of rotation depend on

distance from origin giving us twist



x' x cos  y sin

y' x sin  y cos



x' x cos(d)  y sin(d)

y' x sin(d)  y cos(d)

d  2
x 

2
y

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Example

triangle tessellated triangle

twist without tessellation twist after tessellation

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

