
1

Introduction to Computer

Graphics with WebGL

Ed Angel

Professor Emeritus of Computer Science

Founding Director, Arts, Research,

Technology and Science Laboratory

University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

2

Representation

Ed Angel

Professor Emeritus of Computer Science,

University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

3

Objectives

• Introduce concepts such as dimension

and basis

• Introduce coordinate systems for

representing vectors spaces and frames

for representing affine spaces

•Discuss change of frames and bases

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

4

Linear Independence

•A set of vectors v1, v2, …, vn is linearly

independent if

a1v1+a2v2+.. anvn=0 iff a1=a2=…=0

• If a set of vectors is linearly independent,

we cannot represent one in terms of the

others

• If a set of vectors is linearly dependent, at

least one can be written in terms of the

others

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

5

Dimension

• In a vector space, the maximum number of

linearly independent vectors is fixed and is

called the dimension of the space

• In an n-dimensional space, any set of n linearly

independent vectors form a basis for the space

• Given a basis v1, v2,…., vn, any vector v can be

written as

v=a1v1+ a2v2 +….+anvn

where the {ai} are unique

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

6

Representation

•Until now we have been able to work with

geometric entities without using any frame

of reference, such as a coordinate system

•Need a frame of reference to relate points

and objects to our physical world.

- For example, where is a point? Can’t answer

without a reference system

- World coordinates

- Camera coordinates

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

7

Coordinate Systems

• Consider a basis v1, v2,…., vn

• A vector is written v=a1v1+ a2v2 +….+anvn

• The list of scalars {a1, a2, …. an}is the

representation of v with respect to the given

basis

• We can write the representation as a row or

column array of scalars

a=[a1 a2 …. an]
T

=





















a

a

a

n

2

1

.

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

8

Example

• v=2v1+3v2-4v3

• a=[2 3 –4]T

•Note that this representation is with

respect to a particular basis

•For example, in WebGL we will start by

representing vectors using the object

basis but later the system needs a

representation in terms of the camera or

eye basis

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

9

Coordinate Systems

•Which is correct?

•Both are because vectors have no fixed

location

v

v

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

10

Frames

•A coordinate system is insufficient to

represent points

• If we work in an affine space we can add

a single point, the origin, to the basis

vectors to form a frame

P0

v1

v2

v3

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

11

Representation in a Frame

•Frame determined by (P0, v1, v2, v3)

•Within this frame, every vector can be

written as

v=a1v1+ a2v2 +….+anvn

•Every point can be written as

P = P0 + b1v1+ b2v2 +….+bnvn

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

12

Confusing Points and Vectors

Consider the point and the vector

P = P0 + b1v1+ b2v2 +….+bnvn

v=a1v1+ a2v2 +….+anvn

They appear to have the similar representations

p=[b1 b2 b3] v=[a1 a2 a3]

which confuses the point with the vector

A vector has no position v

p

v

Vector can be placed anywhere

point: fixed

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

13

Introduction to Computer

Graphics with WebGL

Ed Angel

Professor Emeritus of Computer Science

Founding Director, Arts, Research,

Technology and Science Laboratory

University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

14

Homogeneous Coordinates

Ed Angel

Professor Emeritus of Computer Science,

University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

15

Objectives

• Introduce homogeneous coordinates

• Introduce change of representation for

both vectors and points

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

16

A Single Representation

If we define 0•P = 0 and 1•P =P then we can write

v=a1v1+ a2v2 +a3v3 = [a1 a2 a3 0] [v1 v2 v3 P0]
T

P = P0 + b1v1+ b2v2 +b3v3= [b1 b2 b3 1] [v1 v2 v3 P0]
T

Thus we obtain the four-dimensional

homogeneous coordinate representation

v = [a1 a2 a3 0] T

p = [b1 b2 b3 1] T

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

17

Homogeneous Coordinates

and Computer Graphics

•Homogeneous coordinates are key to all

computer graphics systems

- All standard transformations (rotation,

translation, scaling) can be implemented with

matrix multiplications using 4 x 4 matrices

- Hardware pipeline works with 4 dimensional

representations

- For orthographic viewing, we can maintain w=0

for vectors and w=1 for points

- For perspective we need a perspective division

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

18

Change of Coordinate

Systems

•Consider two representations of a the

same vector with respect to two different

bases. The representations are

v=a1v1+ a2v2 +a3v3 = [a1 a2 a3] [v1 v2 v3]
T

=b1u1+ b2u2 +b3u3 = [b1 b2 b3] [u1 u2 u3]
T

a=[a1 a2 a3]

b=[b1 b2 b3]

where

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

19

Representing second

basis in terms of first

Each of the basis vectors, u1,u2, u3, are vectors

that can be represented in terms of the first

basis

u1 = g11v1+g12v2+g13v3

u2 = g21v1+g22v2+g23v3

u3 = g31v1+g32v2+g33v3

v

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

20

Matrix Form

The coefficients define a 3 x 3 matrix

and the bases can be related by

see text for numerical examples

a=MTb

















ggg

ggg

ggg







33

M =

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

21

Change of Frames

• We can apply a similar process in homogeneous
coordinates to the representations of both points
and vectors

• Any point or vector can be represented in either
frame

• We can represent Q0, u1, u2, u3 in terms of P0, v1, v2, v3

Consider two frames:

(P0, v1, v2, v3)

(Q0, u1, u2, u3) P0 v1

v2

v3

Q0

u1
u2

u3

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

22

Representing One Frame in

Terms of the Other

u1 = g11v1+g12v2+g13v3

u2 = g21v1+g22v2+g23v3

u3 = g31v1+g32v2+g33v3

Q0 = g41v1+g42v2+g43v3 +g44P0

Extending what we did with change of bases

defining a 4 x 4 matrix



















ggg

ggg

ggg

ggg









M =

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

23

Working with Representations

Within the two frames any point or vector has a
representation of the same form

a=[a1 a2 a3 a4] in the first frame
b=[b1 b2 b3 b4] in the second frame

where a4 = b4 =  for points and a4 = b4 =  for vectors and

The matrix M is 4 x 4 and specifies an affine
transformation in homogeneous coordinates

a=MTb

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

24

Affine Transformations

•Every linear transformation is equivalent

to a change in frames

•Every affine transformation preserves

lines

•However, an affine transformation has

only 12 degrees of freedom because 4 of

the elements in the matrix are fixed and

are a subset of all possible 4 x 4 linear

transformations

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

25

The World and Camera

Frames

• When we work with representations, we work

with n-tuples or arrays of scalars

• Changes in frame are then defined by 4 x 4

matrices

• In OpenGL, the base frame that we start with is

the world frame

• Eventually we represent entities in the camera

frame by changing the world representation

using the model-view matrix

• Initially these frames are the same (M=I)

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

26

Moving the Camera

If objects are on both sides of z=0, we must move

camera frame





















1000

d100

0010

0001

M =

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

27

Introduction to Computer

Graphics with WebGL

Ed Angel

Professor Emeritus of Computer Science

Founding Director, Arts, Research,

Technology and Science Laboratory

University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

28

Transformations

Ed Angel

Professor Emeritus of Computer Science

University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

29

Objectives

• Introduce standard transformations

- Rotation

- Translation

- Scaling

- Shear

•Derive homogeneous coordinate

transformation matrices

•Learn to build arbitrary transformation

matrices from simple transformations

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

30

General Transformations

A transformation maps points to other

points and/or vectors to other vectors

Q=T(P)

v=T(u)

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

31

Affine Transformations

•Line preserving

•Characteristic of many physically

important transformations

- Rigid body transformations: rotation, translation

- Scaling, shear

• Importance in graphics is that we need

only transform endpoints of line segments

and let implementation draw line segment

between the transformed endpoints

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

32

Pipeline Implementation

transformation rasterizer

u

v

u

v

T

T(u)

T(v)

T(u)
T(u)

T(v)

T(v)

vertices vertices pixels

frame

buffer

(from application program)

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

33

Notation

We will be working with both coordinate-free
representations of transformations and
representations within a particular frame

P,Q, R: points in an affine space

u, v, w: vectors in an affine space

a, b, g: scalars

p, q, r: representations of points

-array of 4 scalars in homogeneous coordinates

u, v, w: representations of vectors

-array of 4 scalars in homogeneous coordinates

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

34

Translation

•Move (translate, displace) a point to a
new location

•Displacement determined by a vector d
- Three degrees of freedom

- P’=P+d

P

P’

d

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

35

How many ways?

Although we can move a point to a new location

in infinite ways, when we move many points

there is usually only one way

object translation: every point displaced

by same vector

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

36

Translation Using

Representations

Using the homogeneous coordinate
representation in some frame

p=[x y z 1]T

p’=[x’ y’ z’ 1]T

d=[dx dy dz 0]T

Hence p’ = p + d or

x’=x+dx
y’=y+dy
z’=z+dz

note that this expression is in

four dimensions and expresses

point = vector + point

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

37

Translation Matrix

We can also express translation using a

4 x 4 matrix T in homogeneous coordinates

p’=Tp where

T = T(dx, dy, dz) =

This form is better for implementation because all affine
transformations can be expressed this way and
multiple transformations can be concatenated together



















1000

d100

d010

d001

z

y

x

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

38

Rotation (2D)

Consider rotation about the origin by q degrees

- radius stays the same, angle increases by q

x’=x cos q –y sin q

y’ = x sin q + y cos q

x = r cos f

y = r sin f

x’ = r cos (f + q)

y’ = r sin (f + q)

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

39

Rotation about the z axis

• Rotation about z axis in three dimensions leaves

all points with the same z

- Equivalent to rotation in two dimensions in

planes of constant z

- or in homogeneous coordinates

p’=Rz(q)p

x’=x cos q –y sin q

y’ = x sin q + y cos q

z’ =z

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

40

Rotation Matrix



















qq

qq

1000

0100

00 cossin

00sin cos

R = Rz(q) =

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

41

Rotation about x and y axes

• Same argument as for rotation about z axis

- For rotation about x axis, x is unchanged

- For rotation about y axis, y is unchanged

R = Rx(q) =

R = Ry(q) =



















qq

qq

1000

0 cos sin0

0 sin- cos0

0001



















qq

qq

1000

0 cos0 sin-

0010

0 sin0 cos

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

42

Scaling



















1000

000

000

000

z

y

x

s

s

s

S = S(sx, sy, sz) =

x’=sxx

y’=syy

z’=szz

p’=Sp

Expand or contract along each axis (fixed point of origin)

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

43

Reflection

corresponds to negative scale factors

originalsx = -1 sy = 1

sx = -1 sy = -1 sx = 1 sy = -1

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

44

Inverses

• Although we could compute inverse matrices by

general formulas, we can use simple geometric

observations

- Translation: T-1(dx, dy, dz) = T(-dx, -dy, -dz)

- Rotation: R -1(q) = R(-q)

• Holds for any rotation matrix

• Note that since cos(-q) = cos(q) and sin(-q)=-sin(q)

R -1(q) = R T(q)

- Scaling: S-1(sx, sy, sz) = S(1/sx, 1/sy, 1/sz)

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

45

Concatenation

• We can form arbitrary affine transformation

matrices by multiplying together rotation,

translation, and scaling matrices

• Because the same transformation is applied to

many vertices, the cost of forming a matrix

M=ABCD is not significant compared to the cost

of computing Mp for many vertices p

• The difficult part is how to form a desired

transformation from the specifications in the

application

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

46

Order of Transformations

•Note that matrix on the right is the first
applied

•Mathematically, the following are
equivalent

p’ = ABCp = A(B(Cp))

•Note many references use column
matrices to represent points. In terms of
column matrices

p’T = pTCTBTAT

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

47

General Rotation About

the Origin

q

x

z

y

v

A rotation by q about an arbitrary axis

can be decomposed into the concatenation

of rotations about the x, y, and z axes

R(q) = Rz(qz) Ry(qy) Rx(qx)

qx qy qz are called the Euler angles

Note that rotations do not commute

We can use rotations in another order but

with different angles

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

48

Rotation About a Fixed

Point other than the Origin

Move fixed point to origin

Rotate

Move fixed point back

M = T(pf) R(q) T(-pf)

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

49

Instancing

• In modeling, we often start with a simple

object centered at the origin, oriented with

the axis, and at a standard size

•We apply an instance transformation to its

vertices to

Scale

Orient

Locate

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

50

Shear

• Helpful to add one more basic transformation

• Equivalent to pulling faces in opposite directions

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

51

Shear Matrix

Consider simple shear along x axis

x’ = x + y cot q

y’ = y

z’ = z

















 q

1000

0100

0010

00cot 1

H(q) =

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

52

Introduction to Computer

Graphics with WebGL

Ed Angel

Professor Emeritus of Computer Science

Founding Director, Arts, Research,

Technology and Science Laboratory

University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

53

WebGL Transformations

Ed Angel

Professor Emeritus of Computer Science

University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

54

Objectives

•Learn how to carry out transformations in

WebGL

- Rotation

- Translation

- Scaling

• Introduce MV.js transformations

- Model-view

- Projection

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

55

Pre 3.1 OpenGL Matrices

• In Pre 3.1 OpenGL matrices were part of
the state

•Multiple types
- Model-View (GL_MODELVIEW)

- Projection (GL_PROJECTION)

- Texture (GL_TEXTURE)

- Color(GL_COLOR)

•Single set of functions for manipulation

•Select which to manipulated by
-glMatrixMode(GL_MODELVIEW);

-glMatrixMode(GL_PROJECTION);
Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Why Deprecation

•Functions were based on carrying out the

operations on the CPU as part of the fixed

function pipeline

•Current model-view and projection

matrices were automatically applied to all

vertices using CPU

•We will use the notion of a current

transformation matrix with the

understanding that it may be applied in

the shaders
56Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

57

Current Transformation

Matrix (CTM)

• Conceptually there is a 4 x 4 homogeneous

coordinate matrix, the current transformation

matrix (CTM) that is part of the state and is

applied to all vertices that pass down the

pipeline

• The CTM is defined in the user program and

loaded into a transformation unit

CTMvertices vertices

p p’=Cp
C

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

58

CTM operations

• The CTM can be altered either by loading a new

CTM or by postmutiplication

Load an identity matrix: C  I

Load an arbitrary matrix: C  M

Load a translation matrix: C  T

Load a rotation matrix: C  R

Load a scaling matrix: C  S

Postmultiply by an arbitrary matrix: C  CM

Postmultiply by a translation matrix: C  CT

Postmultiply by a rotation matrix: C  C R

Postmultiply by a scaling matrix: C  C S
Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

59

Rotation about a Fixed Point

Start with identity matrix: C  I

Move fixed point to origin: C  CT

Rotate: C  CR

Move fixed point back: C  CT -1

Result: C = TR T –1 which is backwards.

This result is a consequence of doing postmultiplications.

Let’s try again.

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

60

Reversing the Order

We want C = T –1 R T
so we must do the operations in the following order

C  I
C  CT -1

C  CR
C  CT

Each operation corresponds to one function call in the
program.

Note that the last operation specified is the first
executed in the program

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

61

CTM in WebGL

•OpenGL had a model-view and a projection

matrix in the pipeline which were

concatenated together to form the CTM

•We will emulate this process

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

62

Using the ModelView Matrix

• In WebGL, the model-view matrix is used to

- Position the camera

• Can be done by rotations and translations but is
often easier to use the lookAt function in MV.js

- Build models of objects

• The projection matrix is used to define the

view volume and to select a camera lens

• Although these matrices are no longer part of

the OpenGL state, it is usually a good strategy

to create them in our own applications

q = P*MV*p
Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

63

Rotation, Translation, Scaling

var r = rotate(theta, vx, vy, vz)

m = mult(m, r);

var s = scale(sx, sy, sz)

var t = translate(dx, dy, dz);

m = mult(s, t);

var m = mat4();

Create an identity matrix:

Multiply on right by rotation matrix of theta in degrees

where (vx, vy, vz) define axis of rotation

Also have rotateX, rotateY, rotateZ

Do same with translation and scaling:

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

64

Example

• Rotation about z axis by 30 degrees with a fixed

point of (1.0, 2.0, 3.0)

• Remember that last matrix specified in the program

is the first applied

var m = mult(translate(1.0, 2.0, 3.0),

rotate(30.0, 0.0, 0.0, 1.0));

m = mult(m, translate(-1.0, -2.0, -3.0));

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

65

Arbitrary Matrices

•Can load and multiply by matrices defined in
the application program

•Matrices are stored as one dimensional array
of 16 elements by MV.js but can be treated as
4 x 4 matrices in row major order

•OpenGL wants column major data

•gl.unifromMatrix4f has a parameter for
automatic transpose by it must be set to false.

• flatten function converts to column major
order which is required by WebGL functions

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

66

Matrix Stacks

• In many situations we want to save

transformation matrices for use later

- Traversing hierarchical data structures (Chapter 9)

•Pre 3.1 OpenGL maintained stacks for each

type of matrix

•Easy to create the same functionality in JS

- push and pop are part of Array object

var stack = []

stack.push(modelViewMatrix);

modelViewMatrix = stack.pop();
Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

67

Introduction to Computer

Graphics with WebGL

Ed Angel

Professor Emeritus of Computer Science

Founding Director, Arts, Research,

Technology and Science Laboratory

University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

68

Applying Transformations

Ed Angel

Professor Emeritus of Computer Science

University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

69

Using Transformations

• Example: Begin with a cube rotating

• Use mouse or button listener to change direction

of rotation

• Start with a program that draws a cube in a

standard way

- Centered at origin

- Sides aligned with axes

- Will discuss modeling in next lecture

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Where do we apply

transformation?

•Same issue as with rotating square

- in application to vertices

- in vertex shader: send MV matrix

- in vertex shader: send angles

•Choice between second and third unclear

•Do we do trigonometry once in CPU or for

every vertex in shader

- GPUs have trig functions hardwired in silicon

70Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Rotation Event Listeners

71

document.getElementById("xButton").onclick = function () {

axis = xAxis; }; document.getElementById("yButton").onclick =

function () { axis = yAxis; }; document.getElementById(

"zButton").onclick = function () { axis = zAxis; };

function render(){

gl.clear(gl.COLOR_BUFFER_BIT | gl.DEPTH_BUFFER_BIT);

theta[axis] += 2.0;

gl.uniform3fv(thetaLoc, theta);

gl.drawArrays(gl.TRIANGLES, 0, NumVertices);

requestAnimFrame(render);

}

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Rotation Shader

72

attribute vec4 vPosition;

attribute vec4 vColor;

varying vec4 fColor;

uniform vec3 theta;

void main() {

vec3 angles = radians(theta);

vec3 c = cos(angles);

vec3 s = sin(angles);

// Remember: these matrices are column-major

mat4 rx = mat4(1.0, 0.0, 0.0, 0.0,

0.0, c.x, s.x, 0.0,

0.0, -s.x, c.x, 0.0,

0.0, 0.0, 0.0, 1.0);

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Rotation Shader (cont)

73

mat4 ry = mat4(c.y, 0.0, -s.y, 0.0,

0.0, 1.0, 0.0, 0.0,

s.y, 0.0, c.y, 0.0,

0.0, 0.0, 0.0, 1.0);

mat4 rz = mat4(c.z, -s.z, 0.0, 0.0,

s.z, c.z, 0.0, 0.0,

0.0, 0.0, 1.0, 0.0,

0.0, 0.0, 0.0, 1.0);

fColor = vColor;

gl_Position = rz * ry * rx * vPosition;

}
Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

74

Smooth Rotation

• From a practical standpoint, we are often want
to use transformations to move and reorient an
object smoothly

- Problem: find a sequence of model-view
matrices M0,M1,…..,Mn so that when they are
applied successively to one or more objects we
see a smooth transition

• For orientating an object, we can use the fact
that every rotation corresponds to part of a
great circle on a sphere

- Find the axis of rotation and angle

- Virtual trackball (see text)
Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

75

Incremental Rotation

• Consider the two approaches

- For a sequence of rotation matrices

R0,R1,…..,Rn , find the Euler angles for each

and use Ri= Riz Riy Rix

• Not very efficient

- Use the final positions to determine the axis

and angle of rotation, then increment only the

angle

• Quaternions can be more efficient than either

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

76

Quaternions

• Extension of imaginary numbers from two to
three dimensions

• Requires one real and three imaginary
components i, j, k

• Quaternions can express rotations on sphere
smoothly and efficiently. Process:

- Model-view matrix  quaternion

- Carry out operations with quaternions

- Quaternion  Model-view matrix

q=q0+q1i+q2j+q3k

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

77

Interfaces

• One of the major problems in interactive
computer graphics is how to use a two-
dimensional device such as a mouse to interface
with three dimensional objects

• Example: how to form an instance matrix?

• Some alternatives

- Virtual trackball

- 3D input devices such as the spaceball

- Use areas of the screen

• Distance from center controls angle, position,
scale depending on mouse button depressed

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

