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Objectives

• Introduce concepts such as dimension 

and basis

• Introduce coordinate systems for 

representing vectors spaces and frames 

for representing affine spaces

•Discuss change of frames and bases
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Linear Independence

•A set of vectors v1, v2, …, vn is linearly 

independent if 

a1v1+a2v2+.. anvn=0 iff a1=a2=…=0

• If a set of vectors is linearly independent, 

we cannot represent one in terms of the 

others 

• If a set of vectors is linearly dependent, at 

least one can be written in terms of the 

others
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Dimension

• In a vector space, the maximum number of 

linearly independent vectors is fixed and is 

called the dimension of the space

• In an n-dimensional space, any set of n linearly 

independent vectors form a basis for the space

• Given a basis v1, v2,…., vn, any vector v can be 

written as

v=a1v1+ a2v2 +….+anvn

where the {ai} are unique
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Representation

•Until now we have been able to work with 

geometric entities without using any frame 

of reference, such as a coordinate system

•Need a frame of reference to relate points 

and objects to our physical world. 

- For example, where is a point? Can’t answer 

without a reference system

- World coordinates

- Camera coordinates
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Coordinate Systems

• Consider a basis v1, v2,…., vn

• A vector is written v=a1v1+ a2v2 +….+anvn

• The list of scalars {a1, a2, …. an}is the 

representation of v with respect to the given 

basis

• We can write the representation as a row or 

column array of scalars

a=[a1 a2 …. an]
T
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Example

• v=2v1+3v2-4v3

• a=[2 3 –4]T

•Note that this representation is with 

respect to a particular basis

•For example, in WebGL we will start by 

representing vectors using the object  

basis but later the system needs a 

representation in terms of the camera or 

eye basis
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Coordinate Systems

•Which is correct?

•Both are because vectors have no fixed 

location

v

v
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Frames

•A coordinate system is insufficient to 

represent points

• If we work in an affine space we can add 

a single point, the origin, to the basis 

vectors to form a frame

P0

v1

v2

v3
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Representation in a Frame

•Frame determined by (P0, v1, v2, v3)

•Within this frame, every vector can be 

written as 

v=a1v1+ a2v2 +….+anvn

•Every point can be written as

P = P0 + b1v1+ b2v2 +….+bnvn
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Confusing Points and Vectors

Consider the point and the vector

P = P0 + b1v1+ b2v2 +….+bnvn

v=a1v1+ a2v2 +….+anvn

They appear to have the similar representations

p=[b1 b2 b3]           v=[a1 a2 a3]

which confuses the point with the vector

A vector has no position v

p

v

Vector can be placed anywhere

point: fixed

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 



13

Introduction to Computer 

Graphics with WebGL

Ed Angel

Professor Emeritus of Computer Science

Founding Director, Arts, Research, 

Technology and Science Laboratory

University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 



14

Homogeneous Coordinates

Ed Angel

Professor Emeritus of Computer Science, 

University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 



15

Objectives

• Introduce homogeneous coordinates

• Introduce change of representation for 

both vectors and points
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A Single Representation 

If we define 0•P = 0 and 1•P =P then we can write

v=a1v1+ a2v2 +a3v3 = [a1 a2 a3 0 ] [v1 v2 v3 P0] 
T

P = P0 + b1v1+ b2v2 +b3v3= [b1 b2 b3 1 ] [v1 v2 v3 P0] 
T

Thus we obtain the four-dimensional 

homogeneous coordinate representation

v = [a1 a2 a3 0 ] T

p = [b1 b2 b3 1 ] T
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Homogeneous Coordinates 

and Computer Graphics

•Homogeneous coordinates are key to all 

computer graphics systems

- All standard transformations (rotation, 

translation, scaling) can be implemented with 

matrix multiplications using 4 x 4 matrices

- Hardware pipeline works with 4 dimensional 

representations

- For orthographic viewing, we can maintain w=0

for vectors and w=1 for points

- For perspective we need a perspective division
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Change of Coordinate 

Systems

•Consider two representations of a the 

same vector with respect to two different 

bases. The representations are 

v=a1v1+ a2v2 +a3v3 = [a1 a2 a3] [v1 v2 v3] 
T

=b1u1+ b2u2 +b3u3 = [b1 b2 b3] [u1 u2 u3] 
T

a=[a1 a2 a3 ]

b=[b1 b2 b3]

where
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Representing second 

basis in terms of first

Each of the basis vectors, u1,u2, u3, are vectors 

that can be represented in terms of the first 

basis

u1 = g11v1+g12v2+g13v3

u2 = g21v1+g22v2+g23v3

u3 = g31v1+g32v2+g33v3

v
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Matrix Form 

The coefficients define a 3 x 3 matrix

and the bases can be related by

see text for numerical examples

a=MTb
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
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Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 



21

Change of Frames

• We can apply a similar process in homogeneous 
coordinates to the representations of both points 
and vectors

• Any point or vector can be represented in either 
frame

• We can represent Q0, u1, u2, u3 in terms of P0, v1, v2, v3

Consider two frames:

(P0, v1, v2, v3)

(Q0, u1, u2, u3) P0 v1

v2

v3

Q0

u1
u2

u3
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Representing One Frame in 

Terms of the Other

u1 = g11v1+g12v2+g13v3

u2 = g21v1+g22v2+g23v3

u3 = g31v1+g32v2+g33v3

Q0 = g41v1+g42v2+g43v3 +g44P0

Extending what we did with change of bases

defining a 4 x 4 matrix
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Working with Representations

Within the two frames any point or vector has a 
representation of the same form

a=[a1 a2 a3 a4 ] in the first frame
b=[b1 b2 b3 b4 ] in the second frame

where a4 = b4 =  for points and a4 = b4 =  for vectors and

The matrix M is 4 x 4 and specifies an affine 
transformation in homogeneous coordinates

a=MTb
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Affine Transformations

•Every linear transformation is equivalent 

to a change in frames

•Every affine transformation preserves 

lines

•However, an affine transformation has 

only 12 degrees of freedom because 4 of 

the elements in the matrix are fixed and 

are a subset of all possible 4 x 4 linear 

transformations
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The World and Camera 

Frames

• When we work with representations, we work 

with n-tuples or arrays of scalars

• Changes in frame are then defined by 4 x 4 

matrices

• In OpenGL, the base frame that we start with is 

the world frame 

• Eventually we represent entities in the camera 

frame by changing the world representation 

using the model-view matrix

• Initially these frames are the same (M=I)
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Moving the Camera 

If objects are on both sides of z=0, we must move 

camera frame


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

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Objectives

• Introduce standard transformations

- Rotation

- Translation

- Scaling

- Shear

•Derive homogeneous coordinate 

transformation matrices

•Learn to build arbitrary transformation 

matrices from simple transformations
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General Transformations

A transformation maps points to other 

points and/or vectors to other vectors

Q=T(P)

v=T(u)
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Affine Transformations

•Line preserving

•Characteristic of many physically 

important transformations

- Rigid body transformations: rotation, translation

- Scaling, shear

• Importance in graphics is that we need 

only transform endpoints of line segments 

and let implementation draw line segment 

between the transformed endpoints
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Pipeline Implementation

transformation rasterizer

u

v

u

v

T

T(u)

T(v)

T(u)
T(u)

T(v)

T(v)

vertices vertices pixels

frame

buffer

(from application program)
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Notation

We will be working with both coordinate-free 
representations of transformations and 
representations within a particular frame

P,Q, R: points in an affine space

u, v, w: vectors in an affine space

a, b, g: scalars

p, q, r: representations of points

-array of 4 scalars in homogeneous coordinates

u, v, w: representations of vectors

-array of 4 scalars in homogeneous coordinates
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Translation

•Move (translate, displace) a point to a 
new location

•Displacement determined by a vector d
- Three degrees of freedom

- P’=P+d

P

P’

d
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How  many ways?

Although we can move a point to a new location 

in infinite ways, when we move many points 

there is usually only one way

object translation: every point displaced

by same vector
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Translation Using 

Representations

Using the homogeneous coordinate 
representation in some frame

p=[ x y z 1]T

p’=[x’ y’ z’ 1]T

d=[dx dy dz 0]T

Hence p’ = p + d or

x’=x+dx
y’=y+dy
z’=z+dz

note that this expression is in 

four dimensions and expresses

point = vector + point
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Translation Matrix

We can also express translation using a 

4 x 4 matrix T in homogeneous coordinates

p’=Tp where

T = T(dx, dy, dz) =

This form is better for implementation because all affine 
transformations can be expressed this way and 
multiple transformations can be concatenated together









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




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d100

d010

d001

z

y
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Rotation (2D)

Consider rotation about the origin by q degrees

- radius stays the same, angle increases by q

x’=x cos q –y sin q

y’ = x sin q + y cos q

x = r cos f

y = r sin f

x’ = r cos (f + q)

y’ = r sin (f + q)
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Rotation about the z axis

• Rotation about z axis in three dimensions leaves 

all points with the same z

- Equivalent to rotation in two dimensions in 

planes of constant z

- or in homogeneous coordinates

p’=Rz(q)p

x’=x cos q –y sin q

y’ = x sin q + y cos q

z’ =z
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Rotation Matrix



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Rotation about x and y axes

• Same argument as for rotation about z axis

- For rotation about x axis, x is unchanged

- For rotation about y axis, y is unchanged

R = Rx(q) =

R = Ry(q) =


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Scaling




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S = S(sx, sy, sz) =

x’=sxx

y’=syy

z’=szz

p’=Sp

Expand or contract along each axis (fixed point of origin)
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Reflection

corresponds to negative scale factors

originalsx = -1 sy = 1

sx = -1 sy = -1 sx = 1 sy = -1
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Inverses

• Although we could compute inverse matrices by 

general formulas, we can use simple geometric 

observations

- Translation: T-1(dx, dy, dz) = T(-dx, -dy, -dz) 

- Rotation: R -1(q) = R(-q)

• Holds for any rotation matrix

• Note that since cos(-q) = cos(q) and sin(-q)=-sin(q)

R -1(q) = R T(q)

- Scaling: S-1(sx, sy, sz) = S(1/sx, 1/sy, 1/sz)
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Concatenation

• We can form arbitrary affine transformation 

matrices by multiplying together rotation, 

translation, and scaling matrices

• Because the same transformation is applied to 

many vertices, the cost of forming a matrix 

M=ABCD is not significant compared to the cost 

of computing Mp for many vertices p

• The difficult part is how to form a desired 

transformation from the specifications in the 

application
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Order of Transformations

•Note that matrix on the right is the first 
applied

•Mathematically, the following are 
equivalent

p’ = ABCp = A(B(Cp))

•Note many references use column 
matrices to represent points. In terms of 
column matrices

p’T = pTCTBTAT
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General Rotation About 

the Origin

q

x

z

y

v

A rotation by q about an arbitrary axis

can be decomposed into the concatenation

of rotations about the x, y, and z axes

R(q) = Rz(qz) Ry(qy) Rx(qx) 

qx qy qz are called the Euler angles

Note that rotations do not commute

We can use rotations in another order but

with different angles
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Rotation About a Fixed 

Point other than the Origin

Move fixed point to origin

Rotate

Move fixed point back

M = T(pf) R(q) T(-pf)
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Instancing

• In modeling, we often start with a simple 

object centered at the origin, oriented with 

the axis, and at a standard size

•We apply an instance transformation to its 

vertices to 

Scale 

Orient

Locate 
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Shear

• Helpful to add one more basic transformation

• Equivalent to pulling faces in opposite directions
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Shear Matrix

Consider simple shear along x axis

x’ = x + y cot q

y’ = y

z’ = z





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Objectives

•Learn how to carry out transformations in 

WebGL

- Rotation

- Translation 

- Scaling

• Introduce MV.js transformations

- Model-view

- Projection
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Pre 3.1 OpenGL Matrices

• In Pre 3.1 OpenGL matrices were part of 
the state

•Multiple types
- Model-View (GL_MODELVIEW)

- Projection (GL_PROJECTION)

- Texture (GL_TEXTURE)

- Color(GL_COLOR)

•Single set of functions for manipulation

•Select which to manipulated by
-glMatrixMode(GL_MODELVIEW);

-glMatrixMode(GL_PROJECTION);
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Why Deprecation

•Functions were based on carrying out the 

operations on the CPU as part of the fixed 

function pipeline

•Current model-view and projection 

matrices were automatically applied to all 

vertices using CPU

•We will use the notion of a current 

transformation matrix with the 

understanding that it may be applied in 

the shaders
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Current Transformation 

Matrix (CTM)

• Conceptually there is a 4 x 4 homogeneous 

coordinate matrix, the current transformation 

matrix (CTM) that is part of the state and is 

applied to all vertices that pass down the 

pipeline

• The CTM is defined in the user program and 

loaded into a transformation unit

CTMvertices vertices

p p’=Cp
C

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 



58

CTM operations

• The CTM can be altered either by loading a new 

CTM or by postmutiplication

Load an identity matrix: C  I

Load an arbitrary matrix: C  M

Load a translation matrix: C  T

Load a rotation matrix: C  R

Load a scaling matrix: C  S

Postmultiply by an arbitrary matrix: C  CM

Postmultiply by a translation matrix: C  CT

Postmultiply by a rotation matrix: C  C R

Postmultiply by a scaling matrix: C  C S
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Rotation about a Fixed Point

Start with identity matrix: C  I

Move fixed point to origin: C  CT

Rotate: C  CR

Move fixed point back: C  CT -1

Result: C = TR T –1 which is backwards. 

This result is a consequence of doing postmultiplications.

Let’s try again.
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Reversing the Order

We want C = T –1 R T 
so we must do the operations in the following order

C  I
C  CT -1

C  CR
C  CT

Each operation corresponds to one function call in the 
program.

Note that the last operation specified is the first 
executed in the program

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 



61

CTM in WebGL

•OpenGL had a model-view and a projection 

matrix in the pipeline which were 

concatenated together to form the CTM

•We will emulate this process
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Using the ModelView Matrix

• In WebGL, the model-view matrix is used to

- Position the camera

• Can be done by rotations and translations but is 
often easier to use the lookAt function in MV.js

- Build models of objects 

• The projection matrix is used to define the 

view volume and to select a camera lens

• Although these matrices are no longer part of 

the OpenGL state, it is usually a good strategy 

to create them in our own applications 

q = P*MV*p
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Rotation, Translation, Scaling

var r = rotate(theta, vx, vy, vz)

m = mult(m, r);

var s = scale( sx, sy, sz)

var t = translate(dx, dy, dz);

m = mult(s, t);

var m = mat4();

Create an identity matrix:

Multiply on right by rotation matrix of theta in degrees

where (vx, vy, vz) define axis of rotation

Also have rotateX, rotateY, rotateZ

Do same with translation and scaling:
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Example

• Rotation about z axis by 30 degrees with a fixed 

point of (1.0, 2.0, 3.0)

• Remember that last matrix specified in the program 

is the first applied

var m = mult(translate(1.0, 2.0, 3.0), 

rotate(30.0, 0.0, 0.0, 1.0));

m = mult(m, translate(-1.0, -2.0, -3.0));
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Arbitrary Matrices

•Can load and multiply by matrices defined in 
the application program

•Matrices are stored as one dimensional array 
of 16 elements by MV.js but can be treated as 
4 x 4 matrices in row major order

•OpenGL wants column major data

•gl.unifromMatrix4f has a parameter for 
automatic transpose by it must be set to false.

• flatten function converts to column major 
order which is required by WebGL functions
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Matrix Stacks

• In many situations we want to save 

transformation matrices for use later

- Traversing hierarchical data structures (Chapter 9)

•Pre 3.1 OpenGL maintained stacks for each 

type of matrix

•Easy to create the same functionality in JS

- push and pop are part of Array object

var stack = [ ]

stack.push(modelViewMatrix);

modelViewMatrix = stack.pop();
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Using Transformations

• Example: Begin with a cube rotating 

• Use mouse or button listener to change direction 

of rotation 

• Start with a program that draws a cube in a 

standard way

- Centered at origin

- Sides aligned with axes

- Will discuss modeling in next lecture
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Where do we apply 

transformation?

•Same issue as with rotating square

- in application to vertices

- in vertex shader: send MV matrix

- in vertex shader: send angles

•Choice between second and third unclear

•Do we do trigonometry once in CPU or for 

every vertex in shader

- GPUs have trig functions hardwired in silicon
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Rotation Event Listeners
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document.getElementById( "xButton" ).onclick = function () {        

axis = xAxis;    };    document.getElementById( "yButton" ).onclick = 

function () {        axis = yAxis;    };    document.getElementById( 

"zButton" ).onclick = function () {        axis = zAxis;    };

function render(){

gl.clear( gl.COLOR_BUFFER_BIT | gl.DEPTH_BUFFER_BIT);

theta[axis] += 2.0;    

gl.uniform3fv(thetaLoc, theta);

gl.drawArrays( gl.TRIANGLES, 0, NumVertices );

requestAnimFrame( render );

}
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Rotation Shader
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attribute  vec4 vPosition;

attribute  vec4 vColor;

varying vec4 fColor;

uniform vec3 theta;

void main() {

vec3 angles = radians( theta );

vec3 c = cos( angles );    

vec3 s = sin( angles );

// Remember: these matrices are column-major

mat4 rx = mat4( 1.0,  0.0,  0.0, 0.0,

0.0,  c.x,  s.x, 0.0,

0.0, -s.x,  c.x, 0.0,

0.0,  0.0,  0.0, 1.0 );
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Rotation Shader (cont)
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mat4 ry = mat4( c.y, 0.0, -s.y, 0.0,

0.0, 1.0,  0.0, 0.0,

s.y, 0.0,  c.y, 0.0,

0.0, 0.0,  0.0, 1.0 );

mat4 rz = mat4( c.z, -s.z, 0.0, 0.0,

s.z,  c.z, 0.0, 0.0,

0.0,  0.0, 1.0, 0.0,

0.0,  0.0, 0.0, 1.0 );

fColor = vColor;

gl_Position = rz * ry * rx * vPosition;

} 
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Smooth Rotation

• From a practical standpoint, we are often want 
to use transformations to move and reorient an 
object smoothly

- Problem: find a sequence of model-view 
matrices M0,M1,…..,Mn so that when they are 
applied successively to one or more objects we 
see a smooth transition

• For orientating an object, we can use the fact 
that every rotation corresponds to part of a 
great circle on a sphere

- Find the axis of rotation and angle

- Virtual trackball (see text)
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Incremental Rotation 

• Consider the two approaches

- For a sequence of rotation matrices 

R0,R1,…..,Rn , find the Euler angles for each 

and use Ri= Riz Riy Rix

• Not very efficient

- Use the final positions to determine the axis 

and angle of rotation, then increment only the 

angle

• Quaternions can be more efficient than either
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Quaternions

• Extension of imaginary numbers from two to 
three dimensions

• Requires one real and three imaginary 
components i, j, k

• Quaternions can express rotations on sphere 
smoothly and efficiently. Process:

- Model-view matrix  quaternion

- Carry out operations with quaternions

- Quaternion  Model-view matrix

q=q0+q1i+q2j+q3k
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Interfaces

• One of the major problems in interactive 
computer graphics is how to use a two-
dimensional device such as a mouse to interface 
with three dimensional objects

• Example: how to form an instance matrix?

• Some alternatives

- Virtual trackball

- 3D input devices such as the spaceball

- Use areas of the screen

• Distance from center controls angle, position, 
scale depending on mouse button depressed
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