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Objectives

i

* Introduce concepts such as dimension
and basis

* Introduce coordinate systems for
representing vectors spaces and frames
for representing affine spaces

* Discuss change of frames and bases
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- Linear Independence

* A set of vectors v, v, ..., vV, IS linearly
Independent if
a,Vi+o,V,+.. a v, =0 Iff a,=a,=...=0
* |If a set of vectors is linearly independent,

we cannot represent one in terms of the
others

* |If a set of vectors is linearly dependent, at
least one can be written in terms of the
others
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- Dimension

* In a vector space, the maximum number of
linearly independent vectors is fixed and is
called the dimension of the space

* In an n-dimensional space, any set of n linearly
Independent vectors form a basis for the space

* Given a basis v, v,,...., V,, any vector v can be
written as

V=o Vit oLV, .oV,
where the {o;} are unique
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M Representation

 Until now we have been able to work with
geometric entities without using any frame
of reference, such as a coordinate system

*Need a frame of reference to relate points
and objects to our physical world.

- For example, where is a point? Can’t answer
without a reference system

- World coordinates
- Camera coordinates
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" Coordinate Systems

« Consider a basis vy, v,,...., V;
* A vector Is written v=o,,V;+ oV, +....FaV,

 The list of scalars {a,, a,, .... a,}s the
representation of v with respect to the given
basis

* We can write the representation as a row or
column array of scalars -]

a=[0L; Oy .... an]T:
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- Example

e V=2V,;+3V,-4V,

«a=[2 3 -4]"

* Note that this representation is with
respect to a particular basis

* For example, in WebGL we will start by
representing vectors using the object
basis but later the system needs a
representation in terms of the camera or
eye basis
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" Coordinate Systems

 \Which Is correct?

/

7

 Both are because vectors have no fixed
location
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" Frames

* A coordinate system is insufficient to
represent points

* If we work In an affine space we can add
a single point, the origin, to the basis
vectors to form a frame

Vs
Vi

Py

V3
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" Representation in a Frame

e Frame determined by (P,, v,, V,, V)

* Within this frame, every vector can be
written as

V=04Vt oLV, T oV,
* Every point can be written as
P =Pyt Bvit BV, +... 4BV,
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" Confusing Points and Vectors

Consider the point and the vector

P =Pyt Byt Bovy +... APV,

V=ao, Vit oLV, ooV,
They appear to have the similar representations
P=[B, B, Bs] v=[a; o, 0] \ /
which confuses the point with the vector}- D

/

A vector has no position / Vv \

Vector can be placed anywhere/*

point: fixed
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Objectives

i

* Introduce homogeneous coordinates

* Introduce change of representation for
noth vectors and points
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" A Single Representation

If we define 0P =0 and 1<P =P then we can write
V=0Vt oV, oV = [og ap a3 0] [vy v, va PO] T

_ _ T
P = Py+ Byvy+ BV, +B3Va= [By By B3 11 [Vy V, V5 Pyl
Thus we obtain the four-dimensional

homogeneous coordinate representation

V=[a;a, oc3O]T

P =1[B1B, Bs 1]T
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Homogeneous Coordinates
<l and Computer Graphics

 Homogeneous coordinates are key to all
computer graphics systems

- All standard transformations (rotation,
translation, scaling) can be implemented with
matrix multiplications using 4 x 4 matrices

- Hardware pipeline works with 4 dimensional
representations

- For orthographic viewing, we can maintain w=0
for vectors and w=1 for points

- For perspective we need a perspective division
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Change of Coordinate

<l Systems

» Consider two representations of a the
same vector with respect to two different
bases. The representations are

a=[o; a, og]
b=[B, B, Bl

where
_ _ T
V=04V + 0LV, +ogVs = [og o, ol [Vy v, V)

=BaU;+ Bou, +B3Us = [B1 By Bal [Ug U, U] !
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Representing second
<M Dbasis in terms of first

Each of the basis vectors, ul,u2, u3, are vectors
that can be represented in terms of the first
basis v,

Uy = V11V HY1oVoTY13V3
Uy = VoV TY2oVotYo3Vs
U3 = Y31V HY3oVotY33V3
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Matrix Form
<P

The coefficients define a 3 x 3 matrix

Yiu Y2 Y13_
M= |V Yo Yo
Va1 V2 Vss

and the bases can be related by
a=MTb
see text for numerical examples
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- Change of Frames

* We can apply a similar process in homogeneous
coordinates to the representations of both points
and vectors

Consider two frames: Vs
(Po, V1, V2, V)
(Q01 u11 u21 u3) PO
V3
* Any point or vector can be represented in either
frame

* We can represent Q,, Uy, U,, U; In terms of P, vy, V,, V,
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Representing One Frame In
< Terms of the Other

Extending what we did with change of bases

Up =7Y11V1TY12VotY13V3
Uy = Y21V1HY2oVoTY23V3
U3 = Y31V1 Y32Vt Y33V3
0= YarVatYaaVotyasVs +Y44Po

defining a 4 x 4 matrix

Yu Yo Y 0
0
M = Yor Yoo Va3
Ysi Y Yz O
Y1 Va2 Va3 1_
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" Working with Representations

Within the two frames any point or vector has a
representation of the same form

a=[a, a, o50,] In the first frame
b=[B, B, PB3P4]In the second frame

where o,=p,= 1 for points and a,=,= 0 for vectors and

a=MTb

The matrix M is 4 x 4 and specifies an affine
transformation in homogeneous coordinates
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- Affine Transformations

* Every linear transformation is equivalent
to a change in frames

 Every affine transformation preserves
lines

 However, an affine transformation has
only 12 degrees of freedom because 4 of
the elements In the matrix are fixed and
are a subset of all possible 4 x 4 linear
transformations
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The World and Camera

< Frames

* When we work with representations, we work
with n-tuples or arrays of scalars

* Changes in frame are then defined by 4 x 4
matrices

* In OpenGL, the base frame that we start with is
the world frame

« Eventually we represent entities in the camera
frame by changing the world representation
using the model-view matrix

e |Initially these frames are the same (M=1)
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" Moving the Camera

If objects are on both sides of z=0, we must move

camera frame )
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Objectives

i

* Introduce standard transformations
- Rotation
- Translation
- Scaling
- Shear

* Derive homogeneous coordinate
transformation matrices

 Learn to build arbitrary transformation
matrices from simple transformations
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- General Transformations

A transformation maps points to other
points and/or vectors to other vectors
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- Affine Transformations

*Line preserving

» Characteristic of many physically
Important transformations
- Rigid body transformations: rotation, translation
- Scaling, shear

* Importance in graphics is that we need
only transform endpoints of line segments
and let implementation draw line segment
between the transformed endpoints
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- Pipeline Implementation

T (from application program)

frame
v T(V) T(v)

e * TW) /
T(u),

S u * T(u)
vertices >~ vertices > pixels
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M Notation

We will be working with both coordinate-free
representations of transformations and
representations within a particular frame
P,Q, R: points in an affine space

u, v, w: vectors in an affine space

o, B, v: scalars

D, g, I': representations of points

-array of 4 scalars in homogeneous coordinates
u, v, w: representations of vectors

-array of 4 scalars in homogeneous coordinates
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Translation
<

* Move (translate, displace) a point to a
new location

‘P

e

 Displacement determined by a vector d

- Three degrees of freedom
- P’=P+d
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?
M How many ways"

Although we can move a point to a new location
In infinite ways, when we move many points
there is usually only one way

object translation: every point displaced
by same vector
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Translation Using
<l Representations

Using the homogeneous coordinate
representation in some frame

p=[xyz1]

p=[x’y' 2’ 1"

d=[dx dy dz O]"
Hencep’=p+dor

X’=x+d, \ note that this expression is in
four dimensions and expresses
point = vector + point
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" Translation Matrix

We can also express translation using a
4 x 4 matrix T in homogeneous coordinates
p'=Tp where

1 0 0 d
0 1 0 d,
T=T@d,d)= |,
000 1

This form is better for implementation because all affine
transformations can be expressed this way and
multiple transformations can be concatenated together
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" Rotation (2D)

Consider rotation about the origin by 6 degrees
- radius stays the same, angle increases by @

x’=r1cos (¢ +0)

/ y’=rsin (¢ + 0)
(x', y)

Ll

X’=x cos 0 -y sin 0
y’=xsmn0+Yycoso

\ X = I COS ¢

= y=rsin ¢

(x, y)
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- Rotation about the z axis

* Rotation about z axis in three dimensions leaves
all points with the same z

- Equivalent to rotation in two dimensions in
planes of constant z

X’=x cos 0 -y sin 0
y’=xsmn0+Yycoso
7’ =7

- or in homogeneous coordinates
p'=R,(8)p
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M Rotation Matrix

cos®O —sin® 0 O
R=R,0)=|SIN6 cos6 0 O
0 0 1 0

0 0 01
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- Rotation about x and y axes

« Same argument as for rotation about z axis
- For rotation about x axis, x is unchanged

- For rotation about y axis, y is unchanged
(1 0 0 0]

0O cosO -sin6 O
R=Ry®)= 10 sino coso 0
0 0 0 1

[ cos O sin O

0 0

R = Ry(G) — 0 1 0 0
-sin® 0 cosO O

0 0 0 1
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" Scaling

Expand or contract along each axis (fixed point of origin)

X’ =8, X
y'=s,y
7’=8,Z
p°=Sp
s, 0
0 s,
S =58 Sy S;) =
0 O
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" Reflection

corresponds to negative scale factors

y
A
s, =-1s,=1 Iiff{ i \\f‘}f! original
' - X
s,=-1s,=-1 | b oY s,=1s,=-1
y . , X y
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Inverses
)

 Although we could compute inverse matrices by
general formulas, we can use simple geometric
observations

- Translation: T-4(d,, d,, d,) = T(-d,, -d,, -d,)
- Rotation: R "1(8) = R(-6)
Holds for any rotation matrix
Note that since cos(-0) = cos(0) and sin(-0)=-sin(0)
R(6) =R '(6)
- Scaling: S(s,, s, s,) = S(1/s,, 1/s,, 1/s,)
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" Concatenation

* We can form arbitrary affine transformation
matrices by multiplying together rotation,
translation, and scaling matrices

* Because the same transformation is applied to
many vertices, the cost of forming a matrix
M=ABCD is not significant compared to the cost
of computing Mp for many vertices p

 The difficult part is how to form a desired
transformation from the specifications in the
application
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- Order of Transformations

* Note that matrix on the right is the first
applied

* Mathematically, the following are
equivalent

p’=ABCp = A(B(Cp))
* Note many references use column

matrices to represent points. In terms of
column matrices

p’T — pTCTBTAT

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 46



General Rotation About

< the Origin

A rotation by 6 about an arbitrary axis
can be decomposed into the concatenation
of rotations about the x, y, and z axes

R(0) = R,(6,) Ry(6,) R,(6,)
y
0, 0, 6,are called the Euler angles
Note that rotations do not commute «
We can use rotations in another order but :
with different angles

Z
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Rotation About a Fixed
<l Point other than the Origin

Move fixed point to origin
Rotate
Move fixed point back

M = T(ps) R(0) T(-py)

. Yy Yy
- Pr
B °
. P;
—_— —_— —_—
X X ﬁrx X
Z/ Z/ Z
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" Instancing

*|In modeling, we often start with a simple
object centered at the origin, oriented with
the axis, and at a standard size

*We apply an instance transformation to its

vertices to T T
Scale T _'T_ ‘
Orient M - TRS *R

T

Locate r ,
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w Shear

 Helpful to add one more basic transformation
« Equivalent to pulling faces in opposite directions

Y ¥

| |
— F*f’/

fx
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" Shear Matrix

Consider simple shear along x axis

y
A
X’=x+ycotd (x, y) ', )
y' =Y i 7
7=z
_ _ /'\9
1 cot6 0 O -
H(0) = 0 1 0 O
0 O 1 0
o 0 0 1
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Objectives

i

*Learn how to carry out transformations in
WebGL

- Rotation
- Translation
- Scaling
* Introduce MV.js transformations

- Model-view
- Projection
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w Pre 3.1 OpenGL Matrices

*In Pre 3.1 OpenGL matrices were part of
the state

* Multiple types
- Model-View (GL._MODELVIEW)
- Projection (GL_PROJECTION)
- Texture (GL_TEXTURE)
- Color(GL_COLOR)

* Single set of functions for manipulation

» Select which to manipulated by
—glMatrixMode (GL MODELVIEW) ;
—~glMatrixMode (GL PROJECTION) ;
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" Why Deprecation

* Functions were based on carrying out the
operations on the CPU as part of the fixed
function pipeline

 Current model-view and projection
matrices were automatically applied to all
vertices using CPU

* \We will use the notion of a current
transformation matrix with the
understanding that it may be applied In
the shaders
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Current Transformation
<l Matrix (CTM)

« Conceptually there is a 4 x 4 homogeneous
coordinate matrix, the current transformation
matrix (CTM) that is part of the state and is
applied to all vertices that pass down the

pipeline

* The CTM is defined in the user program and
loaded into a transformation unit

l C

vertices > CTM

p’=Cp

> vertices
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CTM operations
- P

 The CTM can be altered either by loading a new

CTM or by postmutiplication

Load an identity matrix: C « |
Load an arbitrary matrix: C < M

Load a translation matrix: C « T
Load a rotation matrix;: C «— R
Load a scaling matrix: C «<— S

Postmultiply by an arbitrary matrix: C <« CM
Postmultiply by a translation matrix: C « CT
Postmultiply by a rotation matrix: C < C R
Postmultiply by a scaling matrix: C < C S
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- Rotation about a Fixed Point

Start with identity matrix: C « |
Move fixed point to origin: C « CT
Rotate: C « CR

Move fixed point back: C « CT -1

Result: C=TR T -1 which is backwards.

This result is a consequence of doing postmultiplications.
Let’s try again.
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Reversing the Order
- )

WewantC=T1RT
so we must do the operations in the following order

C« 1

C«CT
C«CR
C«CT

Each operation corresponds to one function call in the
program.

Note that the last operation specified is the first
executed Iin the program
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" CTM in WebGL

* OpenGL had a model-view and a projection
matrix in the pipeline which were
concatenated together to form the CTM

*We will emulate this process

Vertices Vertices
- Model-view ——»  Projection o

| |
|
CTM
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- Using the ModelView Matrix

* In WebGL, the model-view matrix is used to

- Position the camera

Can be done by rotations and translations but is
often easier to use the lookAt function in MV.js

- Build models of objects

* The projection matrix is used to define the
view volume and to select a camera lens

 Although these matrices are no longer part of
the OpenGL state, it Is usually a good strategy
to create them In our own applications

g=P*MV™*p
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- Rotation, Translation, Scaling

Create an identity matrix:

var m = mat4d () ;
Multiply on right by rotation matrix of theta in degrees
where (vx, vy, wvz) define axis of rotation

var r = rotate(theta, vx, vy, vz)

m = mult(m, r);

Also have rotateX, rotateY, rotateZ
Do same with translation and scaling:

var s = scale( sx, sy, sz)
var t = translate(dx, dy, dz);

m = mult(s, t);
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- Example

 Rotation about z axis by 30 degrees with a fixed
point of (1.0, 2.0, 3.0)

var m = mult (translate(1.0, 2.0, 3.0),
rotate(30.0, 0.0, 0.0, 1.0));
m = mult(m, translate(-1.0, -2.0, -3.0));

« Remember that last matrix specified in the program
IS the first applied
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- Arbitrary Matrices

« Can load and multiply by matrices defined in
the application program

* Matrices are stored as one dimensional array
of 16 elements by MV.js but can be treated as
4 X 4 matrices in row major order

* OpenGL wants column major data

* gl.unifromMatrix4f has a parameter for
automatic transpose by it must be set to false.

* flatten function converts to column major
order which is required by WebGL functions
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- Matrix Stacks

*|n many situations we want to save
transformation matrices for use later

- Traversing hierarchical data structures (Chapter 9)

*Pre 3.1 OpenGL maintained stacks for each
type of matrix

* Easy to create the same functionality in JS
- push and pop are part of Array object
var stack =[]
stack.push(modelViewMatrix);

modelViewMatrix = stack.pop();
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Using Transformations
-m J

« Example: Begin with a cube rotating
« Use mouse or button listener to change direction
of rotation
e Start with a program that draws a cube in a
standard way
- Centered at origin
- Sides aligned with axes
- WIll discuss modeling in next lecture
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Where do we apply
< transformation?

e Same issue as with rotating square
- In application to vertices
- In vertex shader: send MV matrix
- In vertex shader: send angles

* Choice between second and third unclear

* Do we do trigonometry once in CPU or for
every vertex in shader
- GPUs have trig functions hardwired in silicon
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" Rotation Event Listeners

document.getElementByld( "xButton" ).onclick = function () {

axis = XAxis; }; document.getElementByld( "yButton" ).onclick =
function () { axis = yAxis; }; document.getElementByld(
"zButton" ).onclick = function () { axis = zAxis; };

function render(){
gl.clear( gl.COLOR_BUFFER_BIT | gl. DEPTH_BUFFER_BIT);
thetaaxis] += 2.0;
gl.uniform3fv(thetalLoc, theta);
gl.drawArrays( gl. TRIANGLES, 0, Num\ertices );
requestAnimFrame( render );
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- Rotation Shader

attribute vec4 vPosition;

attribute vec4 vColor;

varying vec4 fColor;

uniform vec3 theta;

void main() {
vec3 angles = radians( theta ),
vec3 ¢ = cos( angles );
vec3 s = sin( angles );
// Remember: these matrices are column-major
mat4 rx = mat4( 1.0, 0.0, 0.0, 0.0,
0.0, c.x, s.x, 0.0,
0.0, -s.x, c.x, 0.0,
0.0, 0.0, 0.0, 1.0);
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- Rotation Shader (cont)

mat4 ry = mat4( c.y, 0.0, -s.y, 0.0,
0.0, 1.0, 0.0, 0.0,
s.y, 0.0, c.y, 0.0,
0.0,0.0, 0.0,1.0);

mat4 rz = mat4( c.z, -s.z, 0.0, 0.0,
s.z, ¢.z, 0.0, 0.0,
0.0, 0.0, 1.0, 0.0,
0.0, 0.0,0.0,1.0);

fColor = vColor;
gl_Position =rz * ry * rx * vPosition;
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" Smooth Rotation

* From a practical standpoint, we are often want
to use transformations to move and reorient an
object smoothly

- Problem: find a sequence of model-view
matrices M;,M,,.....,M_ so that when they are
applied successively to one or more objects we
see a smooth transition

 For orientating an object, we can use the fact
that every rotation corresponds to part of a
great circle on a sphere

- Find the axis of rotation and angle

- Virtual trackball (see text)
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- Incremental Rotation

« Consider the two approaches

- For a sequence of rotation matrices
Ry,,R4......,R, , find the Euler angles for each
and use Ri= R;; Rj, R,

Not very efficient

- Use the final positions to determine the axis
and angle of rotation, then increment only the
angle

* Quaternions can be more efficient than either
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" Quaternions

« Extension of imaginary numbers from two to
three dimensions

* Requires one real and three imaginary
components |, J, K

0=0o+0,i+0,J+05K

« Quaternions can express rotations on sphere
smoothly and efficiently. Process:
- Model-view matrix — gquaternion
- Carry out operations with quaternions
- Quaternion —» Model-view matrix
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- Interfaces

* One of the major problems in interactive
computer graphics is how to use a two-

dimensional device such as a mouse to interface

with three dimensional objects
« Example: how to form an instance matrix?
« Some alternatives
- Virtual trackball
- 3D input devices such as the spaceball

- Use areas of the screen

Distance from center controls angle, position,
scale depending on mouse button depressed
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