Building Models

Ed Angel
Professor Emeritus of Computer Science
University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

he Universily ol New Mexico

- Objectives

* Introduce simple data structures for
building polygonal models
- Vertex lists
- Edge lists

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

B Representing a Mesh

mversily ol New Mexico

* There are 8 nodes and 12 edges
- 5 interior polygons
- 6 interior (shared) edges
* Each vertex has a location v; = (x; y; Z))

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

~&" Simple Representation

mversily ol New Mexico

 Define each polygon by the geometric locations
of its vertices

e Leads to WebGL code such as

vertex.push (vec3(x1l, y1l, z1));
vertex.push (vec3(x6, y6, z6));
vertex.push (vec3(x7, y7, z7));

 |nefficient and unstructured
- Consider moving a vertex to a new location
- Must search for all occurrences

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

T Inward and Outward
Facing Polygons

* The order {v,, v, V,} and {v,, v-, v, } are equivalent in
that the same polygon will be rendered by OpenGL but
the order {v,, v,, v¢} Is different

 The first two describe outwardly

facing polygons P\]
/
« Use the right-hand rule = / &
counter-clockwise encirclement /
le—F—°

of outward-pointing normal ‘
* OpenGL can treat inward and
outward facing polygons differently 0

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 5

~®" Geometry vs Topology

he Universily ol New Mexico

* Generally it iIs a good idea to look for data
structures that separate the geometry
from the topology

- Geometry: locations of the vertices

- Topology: organization of the vertices and
edges

- Example: a polygon is an ordered list of
vertices with an edge connecting successive
pairs of vertices and the last to the first

- Topology holds even if geometry changes

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

*l. Vertex Lists

mversily ol New Mexico

 Put the geometry in an array
« Use pointers from the vertices into this array

* Introduce a polygon list
: X1 Y124
P1 zl X2 y2 22
P2 v; X3Y3 23
P3 X4 y4 Z4
P4 |- > | Vg | . X5 Ye L5
PO Vs | - %6 Y6 %6
Ve 1 X7 Y7 47
topology geometry | %8 Ys %8

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

- Shared Edges

he Universily ol New Mexico

* Vertex lists will draw filled polygons correctly but
If we draw the polygon by its edges, shared
edges are drawn twice

« Can store mesh by edge list

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

{lu

The

Umive

msily ol New Mexico

Edge List

el|” vl
oY S— - | V6
E >
e4 | .
e | >
E >
a7 | .
e8| .
ag |- .

X1¥Y144
X2 Y2 2,
X3 Y3 Z3
X2 Y424

X5 Y5 Zs,

Xe Y6 Zg
X7Y747
Xg Yg Zg

Note polygons are
not represented

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

<~ Draw cube from faces

The Umiversily ol New Mexico

var colorCube()

{
quad(0,3,2,1); 5 §)
quad(2,3,7,6) ;
quad(0,4,7,3) ;
quad(1,2,6,5); 1 2
quad(4,5,6,7) ;
quad(0,1,5,4) ;

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 10

g+ [ntroduction to Computer
Graphics with WebGL

Ed Angel
Professor Emeritus of Computer Science

Founding Director, Arts, Research,
Technology and Science Laboratory

University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 1

The Rotating Square

Ed Angel
Professor Emeritus of Computer Science
University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

12

he Universily ol New Mexico

- Objectives

 Put everything together to display
rotating cube

* Two methods of display
- by arrays
- by elements

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

13

~ Modeling a Cube

The Umiversily ol New Mexico

Define global array for vertices

var vertices = |
vec3(-0.5, -0.5, 0.5),
vec3(-0.5, 0.5, 0.5),
vec3(0.5, 0.5, 0.5),
vec3(0.5, -0.5, 0.5),
vec3(-0.5, -0.5, -0.5),
vec3(-0.5, 0.5, -0.5),
vec3(0.5, 0.5, -0.5),
vec3(0.5, -0.5, -0.5)
1

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 14

{lu

The Umiversily ol New Mexico

Colors

Define global array for colors

var vertexColors
0.

[

-_—m-ete-’CY]|es|- Y™ ™

17

HFOROORHR
OO0OO0OO0O0OO0OOo

~

0,

4

~

~

~

~

~
~
~

~
~
~

~
~
~

~
~
~

~
~
~

~
~
~

~
~
~

O OO0 o0oooooool

~

RRrROORKEROO
RRrRRPROOOO
OO0OO0OO0OO0OO0OO0OOo
RRRRPRRRRR
OO0OO0OO0OO0OO0OO0OOo

et d b bd b e hd

//
//
//
//
//
//
//
//

black
red
yellow
green
blue
magenta
cyan
white

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

<~ Draw cube from faces

The Umiversily ol New Mexico

function colorCube()

{
quad (0,3,2,1); 5 6
quad(2,3,7,6) ;
quad(0,4,7,3) ; ///
quad(1,2,6,5); 1 2
quad(4,5,6,7) ;
quad(0,1,5,4) ;

0

Note that vertices are ordered so that
we obtain correct outward facing normals

Each quad generates two triangles
Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 16

~a Initialization

The Umiversily ol New Mexico

var canvas, gl;

var numVertices = 36;
var points = [];
var colors = [];

window.onload = function init () {
canvas = document.getElementById("gl-canvas") ;
gl = WebGLUtils.setupWebGL(canvas) ;

colorCube () ;
gl.viewport(0, 0, canvas.width, canvas.height);
gl.clearColor(1.0, 1.0, 1.0, 1.0);
gl.enable (gl.DEPTH TEST) ;

// rest of initialization and html file
// samR AShHRReVHS CeRampPheRs 7E © Addison-Wesley 2015 17

~ The quad Function

The Umiversily ol New Mexico

Put position and color data for two triangles from
a list of indices into the array vertices

var quad(a, b, c, d)

{

[a, b, ¢, a, ¢, d 1;

O; i < indices.length; ++i) {

var indices =
for (var 1 =
points.push(vertices[indices[i]])

colors.push(vertexColors[indices[i]])

// for solid colored faces use
//colors.push (vertexColors[a]) ;

)
} 18

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

~a Render Function

The Umiversily ol New Mexico

function render () {
gl.clear(gl.COLOR BUFFER BIT |gl.DEPTH BUFFER BIT);
gl.drawArrays(gl.TRIANGLES, 0, numVertices);
requestAnimFrame (render);

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 19

~#" Mapping indices to faces

var indices = [

-
-
-

~
~
~

~
~
~

~
~
~

OodbdPRPOWIDMNMNWER
_ JOODNOUOT JOOoYWNDMNO
oObooORFRPR WADMNAdEFE W

-
-
-

-
-
-

-
-
-

-
-
-

-
-
-

o
=
O

Angel and Shreiner] Interactive Computer Graphics 7E © Addison-Wesley 2015

he Universily ol New Mexico

<& Rendering by Elements

* Send indices to GPU

var iBuffer = gl.createBuffer()

gl.bindBuffer (gl.ELEMENT ARRAY BUFFER, iBuffer);

gl.bufferData (gl.ELEMENT ARRAY BUFFER,

new U1nt8Array(1ndlces), gl.STATIC DRAW) ;

* Render by elements

gl.drawElements (gl.TRIANGLES, numVertices,
gl.UNSIGNED BYTE, 0);

* Even more efficient if we use triangle
strips or triangle fans

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

21

~#" Adding Buttons for Rotation

The Umiversily ol New Mexico

var xAxis =
var yAxis
var zAxis =
var axis = 0;
var theta = [0, 0, 0];
var thetaloc;

14

~

14

0
1
2

document.getElementById("xButton") .onclick
function () { axis = xAxis; };
document.getElementById("yButton") .onclick =
function () { axis = yAxis; };
document.getElementById("zButton") .onclick
function () { axis = zAxis; };

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

~a Render Function

The Umiversily ol New Mexico

function render () {
gl.clear(gl.COLOR BUFFER BIT |gl.DEPTH BUFFER BIT);
theta[axis] += 2.0;
gl .uniform3fv (thetaloc, theta);
gl.drawArrays(gl.TRIANGLES, 0, numVertices);
requestAnimFrame (render);

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 23

g+ [ntroduction to Computer
Graphics with WebGL

Ed Angel
Professor Emeritus of Computer Science

Founding Director, Arts, Research,
Technology and Science Laboratory

University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 24

Classical Viewing

Ed Angel

Professor Emeritus of Computer
Science

University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

25

he Universily ol New Mexico

- Objectives

e Introduce the classical views

« Compare and contrast image formation
by computer with how images have been
formed by architects, artists, and
engineers

e Learn the benefits and drawbacks of
each type of view

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 26

- Classical Viewing

The Umiversily ol New Mexico

* Viewing requires three basic elements
- One or more objects
- A viewer with a projection surface

- Projectors that go from the object(s) to the projection
surface

* Classical views are based on the relationship among
these elements

- The viewer picks up the object and orients it how she
would like to see it

» Each object is assumed to constructed from flat
principal faces
- Buildings, polyhedra, manufactured objects

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

he Universily ol New Mex1

~#" Planar Geometric Projections

« Standard projections project onto a plane

* Projectors are lines that either
- converge at a center of projection
- are parallel

* Such projections preserve lines
- but not necessarily angles

* Nonplanar projections are needed for
applications such as map construction

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 28

- Classical Projections

4

‘
‘ v
1/
Y,

M
Elevation oblique

One-point perspective

~#" Perspective vs Parallel

« Computer graphics treats all projections
the same and implements them with a
single pipeline

* Classical viewing developed different

techniques for drawing each type of
projection

* Fundamental distinction Is between
parallel and perspective viewing even
though mathematically parallel viewing is
the limit of perspective viewing

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 30

Taxonomy of Planar
he Universily of New Mexico Geo m et r I C PrOJ eCtI O n S

planar geometric projections

parallel perspective

I 1 point 2 point 3 point
multiview gxonometric oblique
orthographic |

Isometric dimetric trimetric

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 31

- Perspective Projection

I'he Universily ol New Mexico

Object

Projector—__

Projection plane

COP

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

32

- Parallel Projection

The Umiversily ol New Mexico

Object

\Pro]ecfor

DOP

Projection plane

s

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

33

*l. Orthographic Projection

I'he Universily ol New Mexico

Projectors are orthogonal to projection surface

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

34

. = Multiview Orthographic
~ o
Projection

* Projection plane parallel to principal face
« Usually form front, top, side views

Isometric (not multiview
orthographic view)

~_, front
In CAD and architecture,
we often display three
multiviews plus isometric _
side
top

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 35

Advantages and
~ .
Disadvantages

* Preserves both distances and angles
- Shapes preserved

- Can be used for measurements
Building plans
Manuals

« Cannot see what object really looks like
because many surfaces hidden from view

- Often we add the isometric

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 36

<~#" Axonometric Projections

Allow projection plane to move relative to object

classify by how many angles of
a corner of a projected cube are
the same

none: trimetric .
two: dimetric
three: iIsometric

Projection plane

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

37

Types of Axonometric
Projections

4.“\
The Umiversily ol New Mexico

Advantages and
~ .
Disadvantages

* Lines are scaled (foreshortened) but can find
scaling factors

* Lines preserved but angles are not

- Projection of a circle in a plane not parallel to the
projection plane is an ellipse

« Can see three principal faces of a box-like object

« Some optical illusions possible
- Parallel lines appear to diverge

* Does not look real because far objects are
scaled the same as near objects

» Used in CAD applications

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 39

~ Oblique Projection

The

Umiver

sily ol New Mexico

Arbitrary relationship between projectors
projection plane

and

Projection plane

v
e
R 4
\ \ A
AY Y \
h | A | A |
Projection plane Projection plane

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

40

Advantages and
~ .
Disadvantages

« Can pick the angles to emphasize a particular
face

- Architecture: plan oblique, elevation oblique

* Angles in faces parallel to projection plane are
preserved while we can still see “around” side
Ay

* In physical world, cannot create with simple
camera, possible with bellows camera or special
lens (architectural)

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 41

8" Perspective Projection

Projectors coverge at center of projection

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

- Vanishing Points

he Universily ol New Mexico

 Parallel lines (not parallel to the projection plan)
on the object converge at a single point in the
projection (the vanishing point)

« Drawing simple perspectives by hand uses

these vanishing point(s)

vanishing point

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 43

~#" Three-Point Perspective

* No principal face parallel to projection plane
* Three vanishing points for cube

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

44

~®" Two-Point Perspective

I'he Universily ol New Mexico

* On principal direction parallel to projection plane
« Two vanishing points for cube

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 45

<& One-Point Perspective

mversily ol New Mexico

* One principal face parallel to projection plane
* One vanishing point for cube

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

46

Advantages and
~ .
Disadvantages

 Objects further from viewer are projected
smaller than the same sized objects closer to
the viewer (diminution)

- Looks realistic

« Equal distances along a line are not projected
Into equal distances (nonuniform foreshortening)

* Angles preserved only in planes parallel to the
projection plane

« More difficult to construct by hand than parallel
projections (but not more difficult by computer)

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 a7

g+ [ntroduction to Computer
Graphics with WebGL

Ed Angel
Professor Emeritus of Computer Science

Founding Director, Arts, Research,
Technology and Science Laboratory

University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 48

4.“\
The Umiversily ol New Mexico

Computer Viewing
Positioning the Camera

Ed Angel
Professor Emeritus of Computer Science
University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 49

he Universily ol New Mexico

- Objectives

* Introduce the mathematics of projection

* Introduce WebGL viewing functions Iin
MV.Js
*Look at alternate viewing APIs

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

50

he Universily ol New Mexico

- From the Beginning

*|n the beginning:
- fixed function pipeline
- Model-View and Projection Transformation
- Predefined frames: model, object, camera, clip,
ndc, window
* After deprecation
- pipeline with programmable shaders
- no transformations
- clip, ndc window frames

* MV.Js reintroduces original capabillities

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

51

he Universily ol New Mexico

- Computer Viewing

* There are three aspects of the viewing
process, all of which are implemented In
the pipeline,

- Positioning the camera
Setting the model-view matrix

- Selecting a lens
Setting the projection matrix

- Clipping
Setting the view volume

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

52

~&* The WebGL Camera

*In WebGL, Initially the object and camera
frames are the same
- Default model-view matrix is an identity

* The camera is located at origin and points
In the negative z direction

*WebGL also specifies a default view
volume that is a cube with sides of length 2
centered at the origin

- Default projection matrix is an identity

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 53

~ Default Projection

I'he Universily ol New Mexico

Default projection is orthogonal

y
A
clipped out
AV
e] .

| Projection plane z=0

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

54

~&* Moving the Camera Frame

* If we want to visualize objects with both positive
and negative z values we can either

- Move the camera In the positive z direction
Translate the camera frame

- Move the objects in the negative z direction
Translate the world frame

* Both of these views are equivalent and are
determined by the model-view matrix

- Want a translation (translate(0.0,0.0,-d) ;)
-d > 0

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 55

.~ Moving Camera back
4.* - .
from Ori gin

frames after translation by —d

d>0
default frames
Y, Ye Ye A
X, X, - X
/ Z
(al (b)

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

he Universily ol New Mexico

~&* Moving the Camera

*We can move the camera to any desired
position by a sequence of rotations and
translations y

A

* Example: side view
- Rotate the camera
- Move it away from origin -

- Model-view matrix C = TR M
R

Z

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 57

i.llbu

WebGL code

he Universily ol New Mexico

* Remember that last transformation
specified is first to be applied

// Using MV. s

var t = translate (0.0, 0.0, -4d);
var ry = rotate¥(90.0);

var m = mult(t, ry);

or

var m = mult(translate (0.0, 0.0, -d),
rotate¥Y (90.0) ;) ;

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

58

~Jf look At

The Umiversily ol New Mexico

LookAt (eye, at, up)

(up,: UP,. UP,) o Gy

e
%

- X

~ Z
7T leye , eye,, eye)

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 59

*l. The lookAt Function

I'he Universily ol New Mexico

* The GLU library contained the function gluLookAt
to form the required modelview matrix through a
simple interface

* Note the need for setting an up direction
* Replaced by lookAt() in MV.js
- Can concatenate with modeling transformations
« Example: isometric view of cube aligned with axes

var eye = vec3(1.0, 1.0, 1.0);
var at vec3(0.0, O. 0.0);
1.

0,
var up = vec3(0.0, 0, 0.0);

Angel and SRreifa | nte=rac¥|'\8 8(])%%1}-@‘ 8¥p% its 7%1@-3 ,’Adc}l‘.legr)-vflesley 2015 60

he Universily ol New Mexico

~&* Other Viewing APIs

* The LookAt function is only one possible
API for positioning the camera

e Others include

- View reference point, view plane normal, view
up (PHIGS, GKS-3D)

- Yaw, pitch, roll
- Elevation, azimuth, twist
- Direction angles

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

61

g+ [ntroduction to Computer
Graphics with WebGL

Ed Angel
Professor Emeritus of Computer Science

Founding Director, Arts, Research,
Technology and Science Laboratory

University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 62

4.“\
The Umiversily ol New Mexico

Computer Viewing
Projection

Ed Angel
Professor Emeritus of Computer Science
University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

63

he Universily ol New Mexico

- Objectives

* Introduce the mathematics of projection

* Add WebGL projection functions in
MV.Js

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

64

Projections and
{lu J) .
Normalization

* The default projection in the eye (camera)
frame Is orthogonal

 For points within the default view volume
Xp =X

Yo=Y
zp:O

* Most graphics systems use view normalization

- All other views are converted to the default view by
transformations that determine the projection matrix

- Allows use of the same pipeline for all views

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 65

4.“\
The Umiversily ol New Mexico

Homogeneous Coordinate
Representation

default orthographic projection

X

p:X =M
Yo=Y Pp= P
2= 0 1 0 0 0
Wp—l

0100

M =
0 00O
0 0 0 1

In practice, we can let M = | and set
the z term to zero later

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

66

I'he Universily ol New Mexico

~&* Simple Perspective

« Center of projection at the origin
* Projection plane z=d,d <0

-l

(x, v, Z)
/’

(X0 ¥y Z,)
- X

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

67

he Universily ol New Mex1

~&" Perspective Equations

Consider top and side views

"y)‘/ ly, z)
d) ,
- i ; z=d | ¥p.d) ;
: - X e Z i} E
z=d
v
Z
_ X _ oy _
Xp= —— Yp= —— z,=d
" 7/ " Z/d P

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 68

~H Homogeneous
Coordinate Form

1 0 O
considerg=Mpwhere M=|{0 1 O
0 0 1
0 0 1/d
'S T
= |Y| = b= Y
7 VA
1 z/d

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

o O O O

69

<& Perspective Division

 However w = 1, so we must divide by w to
return from homogeneous coordinates

* This perspective division yields

_ X -y _

Xp= —— Yp= —— z,=d
" z/d " z/d ;

the desired perspective equations

* We will consider the corresponding clipping
volume with mat.h functions that are
equivalent to deprecated OpenGL functions

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 0

“ WebGL Orthogonal
The Umiversily ol New Mexico VI eWI n g
ortho (left,right,bottom, top,near, far)

Y [".ﬂhr-' mF-' 'Fﬂr]
I
=far

Z

- ~View volume

-

A

III -
[ia-l#, bottom, -near]

Z =feqar

near and far measured from camera

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

~&* WebGL Perspective

he Universily ol New Mexico

frustum(left,right,bottom, top,near, far)

/’II=—£:I.F
I?-I"I'-E'ﬂl"
Aeepeionn ~[right, fop,-near]

.. "'[i&ﬁ‘, !}ﬂrfﬂnm,—nﬂur]

e

»

i

"

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 2

he Universily ol New Mexico

~&* Using Field of View

*With £rustum It IS often difficult to get the
desired view

perpective (fovy, aspect, near, far)
often provides a better interface

X , — front plane

aspect = w/h

fov

Z
Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 73

- Computing Matrices

I'he Universily ol New Mexico

« Compute in JS file,
send to vertex
shader with
gl.uniformMatrix4fv

* Dynamic: update In
render() or shader

zNear 01° i "3
zFar 3° = 10
radius 0.05° () 10
theta -90° (=90
phi -90° @, * 90
fov 10° 9, 120

as 0.5° =(_) - . :
p%\cr%gel and Shreiner: Interactive %omputer Graphics 7E © Addison-Wesley 2015

74

- perspective2.js

he Universily ol New Mexico

var render = function(){

gl.clear(gl. COLOR_BUFFER_BIT | gl. DEPTH_BUFFER_BIT);

eye = vec3(radius*Math.sin(theta)*Math.cos(phi),
radius*Math.sin(theta)*Math.sin(phi), radius*Math.cos(theta));

modelViewMatrix = lookAt(eye, at , up);

projectionMatrix = perspective(fovy, aspect, near, far);

gl.uniformMatrix4fv(modelViewMatrixLoc, false,
flatten(modelViewMatrix));

gl.uniformMatrix4fv(projectionMatrixLoc, false,
flatten(projectionMatrix));

gl.drawArrays(gl. TRIANGLES, 0, Num\ertices);

requestAnimFrame(render);

} Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 &

<~ vertex shader

he Universily ol New Mexico

attribute vec4 vPosition;
attribute vec4 vColor;

varying vec4 fColor;

uniform mat4 modelViewMatrix;
uniform mat4 projectionMatrix;

void main() {
gl_Position = projectionMatrix*modelViewMatrix*vPosition;
fColor = vColor;

}

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 6

