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Objectives

• Introduce simple data structures for 

building polygonal models

- Vertex lists

- Edge lists
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Representing a Mesh

• Consider a mesh

• There are 8 nodes and 12 edges

- 5 interior polygons

- 6 interior (shared) edges

• Each vertex has a location vi = (xi yi zi)

v1
v2

v7

v6

v8

v5

v4

v3

e1

e8

e3

e2

e11

e6

e7

e10

e5

e4

e9

e12

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 



4

Simple Representation

• Define each polygon by the geometric locations 

of its vertices

• Leads to WebGL code such as

• Inefficient and unstructured

- Consider moving a vertex to a new location

- Must search for all occurrences 

vertex.push(vec3(x1, y1, z1));

vertex.push(vec3(x6, y6, z6));

vertex.push(vec3(x7, y7, z7));

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 



5

Inward and Outward 

Facing Polygons

• The order {v1, v6, v7} and {v6, v7, v1} are equivalent in 

that the same polygon will be rendered by OpenGL but 

the order {v1, v7, v6} is different

• The first two describe outwardly 

facing polygons

• Use the right-hand rule = 

counter-clockwise encirclement 

of outward-pointing normal 

• OpenGL can treat inward and 

outward facing polygons differently
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Geometry vs Topology

•Generally it is a good idea to look for data 

structures that separate the geometry 

from the topology

- Geometry: locations of the vertices

- Topology: organization of the vertices and 

edges

- Example: a polygon is an ordered list of 

vertices with an edge connecting successive 

pairs of vertices and the last to the first

- Topology holds even if geometry changes
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Vertex Lists

• Put the geometry in an array

• Use pointers from the vertices into this array

• Introduce a polygon list
x1 y1 z1
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x5 y5 z5.
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Shared Edges

• Vertex lists will draw filled polygons correctly but 

if we draw the polygon by its edges, shared 

edges are drawn twice

• Can store mesh by edge list
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Edge List

v1
v2

v7

v6

v8

v5

v3

e1

e8

e3

e2

e11

e6

e7

e10

e5

e4

e9

e12

e1

e2

e3

e4

e5

e6

e7

e8

e9

x1 y1 z1

x2 y2 z2

x3 y3 z3

x4 y4 z4

x5 y5 z5.

x6 y6 z6

x7 y7 z7

x8 y8 z8

v1

v6

Note polygons are

not represented

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 



10

Draw cube from faces

var colorCube( )

{

quad(0,3,2,1);

quad(2,3,7,6);

quad(0,4,7,3);

quad(1,2,6,5);

quad(4,5,6,7);

quad(0,1,5,4);

}
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Objectives

•Put everything together to display 

rotating cube

•Two methods of display

- by arrays

- by elements
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Modeling a Cube

var vertices = [

vec3( -0.5, -0.5,  0.5 ),

vec3( -0.5,  0.5,  0.5 ),

vec3(  0.5,  0.5,  0.5 ),

vec3(  0.5, -0.5,  0.5 ),

vec3( -0.5, -0.5, -0.5 ),

vec3( -0.5,  0.5, -0.5 ),

vec3(  0.5,  0.5, -0.5 ),

vec3(  0.5, -0.5, -0.5 )

];

Define global array for vertices
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Colors

var vertexColors = [

[ 0.0, 0.0, 0.0, 1.0 ],  // black

[ 1.0, 0.0, 0.0, 1.0 ],  // red

[ 1.0, 1.0, 0.0, 1.0 ],  // yellow

[ 0.0, 1.0, 0.0, 1.0 ],  // green

[ 0.0, 0.0, 1.0, 1.0 ],  // blue

[ 1.0, 0.0, 1.0, 1.0 ],  // magenta

[ 0.0, 1.0, 1.0, 1.0 ],  // cyan

[ 1.0, 1.0, 1.0, 1.0 ]   // white

];

Define global array for colors
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Draw cube from faces

function colorCube( )

{

quad(0,3,2,1);

quad(2,3,7,6);

quad(0,4,7,3);

quad(1,2,6,5);

quad(4,5,6,7);

quad(0,1,5,4);

}
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Note that vertices are ordered so that 

we obtain correct outward facing normals

Each quad generates two triangles
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Initialization
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var canvas, gl;

var numVertices  = 36;

var points = [];

var colors = [];

window.onload = function init(){

canvas = document.getElementById( "gl-canvas" ); 

gl = WebGLUtils.setupWebGL( canvas );   

colorCube();  

gl.viewport( 0, 0, canvas.width, canvas.height );

gl.clearColor( 1.0, 1.0, 1.0, 1.0 );

gl.enable(gl.DEPTH_TEST);

// rest of initialization and html file 

// same as previous examplesAngel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 
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The quad Function

Put position and color data for two triangles from 
a list of indices into the array vertices

var quad(a, b, c, d)

{

var indices = [ a, b, c, a, c, d ];

for ( var i = 0; i < indices.length; ++i ) {

points.push( vertices[indices[i]]);

colors.push( vertexColors[indices[i]] );

// for solid colored faces use 

//colors.push(vertexColors[a]);

}

}
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Render Function
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function render(){

gl.clear( gl.COLOR_BUFFER_BIT |gl.DEPTH_BUFFER_BIT);

gl.drawArrays( gl.TRIANGLES, 0, numVertices );

requestAnimFrame( render );

}
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Mapping indices to faces

var indices = [

1,0,3,

3,2,1,

2,3,7,

7,6,2, 

3,0,4,

4,7,3,

6,5,1,

1,2,6,

4,5,6,

6,7,4,

5,4,0,

0,1,5

];Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 



Rendering by Elements

•Send indices to GPU

•Render by elements

•Even more efficient if we use triangle 

strips or triangle fans
21

var iBuffer = gl.createBuffer();

gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER, iBuffer);

gl.bufferData(gl.ELEMENT_ARRAY_BUFFER, 

new Uint8Array(indices), gl.STATIC_DRAW);

gl.drawElements( gl.TRIANGLES, numVertices,

gl.UNSIGNED_BYTE, 0 );
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Adding Buttons for Rotation
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var xAxis = 0;

var yAxis = 1;

var zAxis = 2;

var axis = 0;

var theta = [ 0, 0, 0 ];

var thetaLoc;

document.getElementById( "xButton" ).onclick = 

function () {        axis = xAxis;    };    

document.getElementById( "yButton" ).onclick = 

function () {        axis = yAxis;    };    

document.getElementById( "zButton" ).onclick = 

function () {        axis = zAxis;    };
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Render Function
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function render(){

gl.clear( gl.COLOR_BUFFER_BIT |gl.DEPTH_BUFFER_BIT);

theta[axis] += 2.0;

gl.uniform3fv(thetaLoc, theta);

gl.drawArrays( gl.TRIANGLES, 0, numVertices );

requestAnimFrame( render );

}
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Objectives

• Introduce the classical views

•Compare and contrast image formation 

by computer with how images have been 

formed by architects, artists, and 

engineers

•Learn the benefits and drawbacks of 

each type of view
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Classical Viewing

• Viewing requires three basic elements

- One or more objects

- A viewer with a projection surface

- Projectors that go from the object(s) to the projection 

surface

• Classical views are based on the relationship among 

these elements

- The viewer picks up the object and orients it how she 

would like to see it

• Each object is assumed to constructed from flat 

principal faces 

- Buildings, polyhedra, manufactured objects
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Planar Geometric Projections

•Standard projections project onto a plane

•Projectors are lines that either

- converge at a center of projection

- are parallel

•Such projections preserve lines

- but not necessarily angles

•Nonplanar projections are needed for 

applications such as map construction
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Classical Projections
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Perspective vs Parallel

•Computer graphics treats all projections 
the same and implements them with a 
single pipeline

•Classical viewing developed different 
techniques for drawing each type of 
projection

•Fundamental distinction is between 
parallel and perspective viewing even 
though mathematically parallel viewing is 
the limit of perspective viewing
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Taxonomy of Planar 

Geometric Projections

parallel perspective

axonometricmultiview

orthographic
oblique

isometric dimetric trimetric

2 point1 point 3 point

planar geometric projections
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Perspective Projection
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Parallel Projection
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Orthographic Projection

Projectors are orthogonal to projection surface
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Multiview Orthographic 

Projection

• Projection plane parallel to principal face

• Usually form front, top, side views

isometric (not multiview

orthographic view)
front

side
top

in CAD and  architecture, 

we often display three 

multiviews plus isometric 
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Advantages and 

Disadvantages

•Preserves both distances and angles

- Shapes preserved

- Can be used for measurements

• Building plans

• Manuals

•Cannot see what object really looks like 

because many surfaces hidden from view

- Often we add the isometric
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Axonometric Projections

Allow projection plane to move relative to object

classify by how many angles of

a corner of a projected cube are 

the same

none: trimetric

two: dimetric

three: isometric

q 1

q 3q 2
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Types of Axonometric 

Projections
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Advantages and 

Disadvantages

• Lines are scaled (foreshortened) but can find 
scaling factors

• Lines preserved but angles are not
- Projection of a circle in a plane not parallel to the 

projection plane is an ellipse

• Can see three principal faces of a box-like object

• Some optical illusions possible
- Parallel lines appear to diverge

• Does not look real because far objects are 
scaled the same as near objects

• Used in CAD applications
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Oblique Projection

Arbitrary relationship between projectors and 

projection plane
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Advantages and 

Disadvantages

• Can pick the angles to emphasize a particular 
face

- Architecture: plan oblique, elevation oblique

• Angles in faces parallel to projection plane are 
preserved while we can still see “around” side

• In physical world, cannot create with simple 
camera; possible with bellows camera or special 
lens (architectural)
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Perspective Projection

Projectors coverge at center of projection
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Vanishing Points

• Parallel lines (not parallel to the projection plan) 

on the object converge at a single point in the 

projection (the vanishing point) 

• Drawing simple perspectives by hand uses 

these vanishing point(s)

vanishing point

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 



44

Three-Point Perspective

• No principal face parallel to projection plane

• Three vanishing points for cube
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Two-Point Perspective

• On principal direction parallel to projection plane

• Two vanishing points for cube
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One-Point Perspective 

• One principal face parallel to projection plane

• One vanishing point for cube
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Advantages and 

Disadvantages

• Objects further from viewer are projected 

smaller than the same sized objects closer to 

the viewer (diminution)

- Looks realistic

• Equal distances along a line are not projected 

into equal distances (nonuniform foreshortening)

• Angles preserved only in planes parallel to the 

projection plane

• More difficult to construct by hand than parallel 

projections (but not more difficult by computer)
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Objectives

• Introduce the mathematics of projection

• Introduce WebGL viewing functions in 

MV.js

•Look at alternate viewing APIs
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From the Beginning

• In the beginning:

- fixed function pipeline

- Model-View and Projection Transformation

- Predefined frames: model, object, camera, clip, 

ndc, window

•After deprecation

- pipeline with programmable shaders

- no transformations

- clip, ndc window frames

•MV.js reintroduces original capabilities
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Computer Viewing

•There are three aspects of the viewing 

process, all of which are implemented in 

the pipeline,

- Positioning the camera

• Setting the model-view matrix

- Selecting a lens

• Setting the projection matrix

- Clipping

• Setting the view volume
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The WebGL Camera

• In WebGL, initially the object and camera 

frames are the same

- Default model-view matrix is an identity

•The camera is located at origin and points 

in the negative z direction

•WebGL also specifies a default view 

volume that is a cube with sides of length 2 

centered at the origin 

- Default projection matrix is an identity
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Default Projection

Default projection is orthogonal

clipped out

z=0

2

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 



55

Moving the Camera Frame

• If we want to visualize objects with both positive 

and negative z values we can either

- Move the camera in the positive z direction

• Translate the camera frame

- Move the objects in the negative z direction

• Translate the world frame

•Both of these views are equivalent and are 

determined by the model-view matrix

- Want a translation (translate(0.0,0.0,-d);)

-d > 0
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Moving Camera back 

from Origin 

default frames

frames after translation by –d

d > 0

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 



57

Moving the Camera

•We can move the camera to any desired 

position by a sequence of rotations and 

translations

•Example: side view

- Rotate the camera

- Move it away from origin

- Model-view matrix C = TR
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WebGL code

•Remember that last transformation 

specified is first to be applied

// Using MV.js

var t = translate (0.0, 0.0, -d);

var ry = rotateY(90.0);

var m = mult(t, ry);

or

var m = mult(translate (0.0, 0.0, -d),

rotateY(90.0););
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lookAt

LookAt(eye, at, up)
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The lookAt Function

• The GLU library contained the function gluLookAt 

to form the required modelview matrix through a 

simple interface

• Note the need for setting an up direction

• Replaced by lookAt() in MV.js

- Can concatenate with modeling transformations

• Example: isometric view of cube aligned with axes

var eye = vec3(1.0, 1.0, 1.0);

var at = vec3(0.0, 0.0, 0.0);

var up = vec3(0.0, 1.0, 0.0);

var mv = LookAt(eye, at, up); 
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Other Viewing APIs

•The LookAt function is only one possible 

API for positioning the camera

•Others include

- View reference point, view plane normal, view 

up (PHIGS, GKS-3D)

- Yaw, pitch, roll

- Elevation, azimuth, twist

- Direction angles
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Objectives

• Introduce the mathematics of projection

•Add WebGL projection functions in 

MV.js
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Projections and 

Normalization

•The default projection in the eye (camera) 

frame is orthogonal 

•For points within the default view volume

•Most graphics systems use view normalization

- All other views are converted to the default view by 

transformations that determine the projection matrix

- Allows use of the same pipeline for all views

xp = x

yp = y

zp = 0
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Homogeneous Coordinate 

Representation

xp = x

yp = y

zp = 0

wp = 1

pp = Mp

M = 



















1000

0000

0010

0001

In practice, we can let M = I and set

the z term to zero later

default orthographic projection
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Simple Perspective

•Center of projection at the origin

•Projection plane z = d, d < 0
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Perspective Equations

Consider top and side views

xp =

dz

x

/

dz

x

/
yp =

dz

y

/
zp = d
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Homogeneous 

Coordinate Form

M = 





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Perspective Division

•However w  1, so we must divide by w to 

return from homogeneous coordinates

•This perspective division yields

the desired perspective equations 

•We will consider the corresponding clipping 

volume with mat.h functions that are 

equivalent to deprecated OpenGL functions

xp =
dz

x

/
yp =

dz

y

/
zp = d
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WebGL Orthogonal 

Viewing
ortho(left,right,bottom,top,near,far)

near and far measured from camera
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WebGL Perspective

frustum(left,right,bottom,top,near,far)
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Using Field of View

•With frustum it is often difficult to get the 

desired view

•perpective(fovy, aspect, near, far)

often provides a better interface

aspect = w/h

front plane
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Computing Matrices

•Compute in JS file, 

send to vertex 

shader with 

gl.uniformMatrix4fv

•Dynamic: update in 

render() or shader
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perspective2.js

75

var render = function(){

gl.clear( gl.COLOR_BUFFER_BIT | gl.DEPTH_BUFFER_BIT);

eye = vec3(radius*Math.sin(theta)*Math.cos(phi),

radius*Math.sin(theta)*Math.sin(phi), radius*Math.cos(theta));

modelViewMatrix = lookAt(eye, at , up);

projectionMatrix = perspective(fovy, aspect, near, far);

gl.uniformMatrix4fv( modelViewMatrixLoc, false,

flatten(modelViewMatrix) );

gl.uniformMatrix4fv( projectionMatrixLoc, false,

flatten(projectionMatrix) );

gl.drawArrays( gl.TRIANGLES, 0, NumVertices );

requestAnimFrame(render);

}
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vertex shader

76

attribute  vec4 vPosition;

attribute  vec4 vColor;

varying vec4 fColor;

uniform mat4 modelViewMatrix;

uniform mat4 projectionMatrix;

void main() {

gl_Position = projectionMatrix*modelViewMatrix*vPosition;

fColor = vColor;

} 
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