
1

Building Models

Ed Angel

Professor Emeritus of Computer Science

University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

2

Objectives

• Introduce simple data structures for

building polygonal models

- Vertex lists

- Edge lists

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

3

Representing a Mesh

• Consider a mesh

• There are 8 nodes and 12 edges

- 5 interior polygons

- 6 interior (shared) edges

• Each vertex has a location vi = (xi yi zi)

v1
v2

v7

v6

v8

v5

v4

v3

e1

e8

e3

e2

e11

e6

e7

e10

e5

e4

e9

e12

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

4

Simple Representation

• Define each polygon by the geometric locations

of its vertices

• Leads to WebGL code such as

• Inefficient and unstructured

- Consider moving a vertex to a new location

- Must search for all occurrences

vertex.push(vec3(x1, y1, z1));

vertex.push(vec3(x6, y6, z6));

vertex.push(vec3(x7, y7, z7));

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

5

Inward and Outward

Facing Polygons

• The order {v1, v6, v7} and {v6, v7, v1} are equivalent in

that the same polygon will be rendered by OpenGL but

the order {v1, v7, v6} is different

• The first two describe outwardly

facing polygons

• Use the right-hand rule =

counter-clockwise encirclement

of outward-pointing normal

• OpenGL can treat inward and

outward facing polygons differently

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

6

Geometry vs Topology

•Generally it is a good idea to look for data

structures that separate the geometry

from the topology

- Geometry: locations of the vertices

- Topology: organization of the vertices and

edges

- Example: a polygon is an ordered list of

vertices with an edge connecting successive

pairs of vertices and the last to the first

- Topology holds even if geometry changes

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

7

Vertex Lists

• Put the geometry in an array

• Use pointers from the vertices into this array

• Introduce a polygon list
x1 y1 z1

x2 y2 z2

x3 y3 z3

x4 y4 z4

x5 y5 z5.

x6 y6 z6

x7 y7 z7

x8 y8 z8

P1

P2

P3

P4

P5

v1
v7

v6

v8
v5

v6

topology geometry

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

8

Shared Edges

• Vertex lists will draw filled polygons correctly but

if we draw the polygon by its edges, shared

edges are drawn twice

• Can store mesh by edge list

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

9

Edge List

v1
v2

v7

v6

v8

v5

v3

e1

e8

e3

e2

e11

e6

e7

e10

e5

e4

e9

e12

e1

e2

e3

e4

e5

e6

e7

e8

e9

x1 y1 z1

x2 y2 z2

x3 y3 z3

x4 y4 z4

x5 y5 z5.

x6 y6 z6

x7 y7 z7

x8 y8 z8

v1

v6

Note polygons are

not represented

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

10

Draw cube from faces

var colorCube()

{

quad(0,3,2,1);

quad(2,3,7,6);

quad(0,4,7,3);

quad(1,2,6,5);

quad(4,5,6,7);

quad(0,1,5,4);

}

0

5 6

2

4
7

1

3

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

11

Introduction to Computer

Graphics with WebGL

Ed Angel

Professor Emeritus of Computer Science

Founding Director, Arts, Research,

Technology and Science Laboratory

University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

12

The Rotating Square

Ed Angel

Professor Emeritus of Computer Science

University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

13

Objectives

•Put everything together to display

rotating cube

•Two methods of display

- by arrays

- by elements

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

14

Modeling a Cube

var vertices = [

vec3(-0.5, -0.5, 0.5),

vec3(-0.5, 0.5, 0.5),

vec3(0.5, 0.5, 0.5),

vec3(0.5, -0.5, 0.5),

vec3(-0.5, -0.5, -0.5),

vec3(-0.5, 0.5, -0.5),

vec3(0.5, 0.5, -0.5),

vec3(0.5, -0.5, -0.5)

];

Define global array for vertices

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

15

Colors

var vertexColors = [

[0.0, 0.0, 0.0, 1.0], // black

[1.0, 0.0, 0.0, 1.0], // red

[1.0, 1.0, 0.0, 1.0], // yellow

[0.0, 1.0, 0.0, 1.0], // green

[0.0, 0.0, 1.0, 1.0], // blue

[1.0, 0.0, 1.0, 1.0], // magenta

[0.0, 1.0, 1.0, 1.0], // cyan

[1.0, 1.0, 1.0, 1.0] // white

];

Define global array for colors

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

16

Draw cube from faces

function colorCube()

{

quad(0,3,2,1);

quad(2,3,7,6);

quad(0,4,7,3);

quad(1,2,6,5);

quad(4,5,6,7);

quad(0,1,5,4);

}

0

5 6

2

4
7

1

3

Note that vertices are ordered so that

we obtain correct outward facing normals

Each quad generates two triangles
Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Initialization

17

var canvas, gl;

var numVertices = 36;

var points = [];

var colors = [];

window.onload = function init(){

canvas = document.getElementById("gl-canvas");

gl = WebGLUtils.setupWebGL(canvas);

colorCube();

gl.viewport(0, 0, canvas.width, canvas.height);

gl.clearColor(1.0, 1.0, 1.0, 1.0);

gl.enable(gl.DEPTH_TEST);

// rest of initialization and html file

// same as previous examplesAngel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

18

The quad Function

Put position and color data for two triangles from
a list of indices into the array vertices

var quad(a, b, c, d)

{

var indices = [a, b, c, a, c, d];

for (var i = 0; i < indices.length; ++i) {

points.push(vertices[indices[i]]);

colors.push(vertexColors[indices[i]]);

// for solid colored faces use

//colors.push(vertexColors[a]);

}

}
Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Render Function

19

function render(){

gl.clear(gl.COLOR_BUFFER_BIT |gl.DEPTH_BUFFER_BIT);

gl.drawArrays(gl.TRIANGLES, 0, numVertices);

requestAnimFrame(render);

}

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

20

Mapping indices to faces

var indices = [

1,0,3,

3,2,1,

2,3,7,

7,6,2,

3,0,4,

4,7,3,

6,5,1,

1,2,6,

4,5,6,

6,7,4,

5,4,0,

0,1,5

];Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Rendering by Elements

•Send indices to GPU

•Render by elements

•Even more efficient if we use triangle

strips or triangle fans
21

var iBuffer = gl.createBuffer();

gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER, iBuffer);

gl.bufferData(gl.ELEMENT_ARRAY_BUFFER,

new Uint8Array(indices), gl.STATIC_DRAW);

gl.drawElements(gl.TRIANGLES, numVertices,

gl.UNSIGNED_BYTE, 0);

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Adding Buttons for Rotation

22

var xAxis = 0;

var yAxis = 1;

var zAxis = 2;

var axis = 0;

var theta = [0, 0, 0];

var thetaLoc;

document.getElementById("xButton").onclick =

function () { axis = xAxis; };

document.getElementById("yButton").onclick =

function () { axis = yAxis; };

document.getElementById("zButton").onclick =

function () { axis = zAxis; };

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Render Function

23

function render(){

gl.clear(gl.COLOR_BUFFER_BIT |gl.DEPTH_BUFFER_BIT);

theta[axis] += 2.0;

gl.uniform3fv(thetaLoc, theta);

gl.drawArrays(gl.TRIANGLES, 0, numVertices);

requestAnimFrame(render);

}

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

24

Introduction to Computer

Graphics with WebGL

Ed Angel

Professor Emeritus of Computer Science

Founding Director, Arts, Research,

Technology and Science Laboratory

University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

25

Classical Viewing

Ed Angel

Professor Emeritus of Computer

Science

University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

26

Objectives

• Introduce the classical views

•Compare and contrast image formation

by computer with how images have been

formed by architects, artists, and

engineers

•Learn the benefits and drawbacks of

each type of view

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

27

Classical Viewing

• Viewing requires three basic elements

- One or more objects

- A viewer with a projection surface

- Projectors that go from the object(s) to the projection

surface

• Classical views are based on the relationship among

these elements

- The viewer picks up the object and orients it how she

would like to see it

• Each object is assumed to constructed from flat

principal faces

- Buildings, polyhedra, manufactured objects

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

28

Planar Geometric Projections

•Standard projections project onto a plane

•Projectors are lines that either

- converge at a center of projection

- are parallel

•Such projections preserve lines

- but not necessarily angles

•Nonplanar projections are needed for

applications such as map construction

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

29

Classical Projections

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

30

Perspective vs Parallel

•Computer graphics treats all projections
the same and implements them with a
single pipeline

•Classical viewing developed different
techniques for drawing each type of
projection

•Fundamental distinction is between
parallel and perspective viewing even
though mathematically parallel viewing is
the limit of perspective viewing

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

31

Taxonomy of Planar

Geometric Projections

parallel perspective

axonometricmultiview

orthographic
oblique

isometric dimetric trimetric

2 point1 point 3 point

planar geometric projections

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

32

Perspective Projection

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

33

Parallel Projection

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

34

Orthographic Projection

Projectors are orthogonal to projection surface

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

35

Multiview Orthographic

Projection

• Projection plane parallel to principal face

• Usually form front, top, side views

isometric (not multiview

orthographic view)
front

side
top

in CAD and architecture,

we often display three

multiviews plus isometric

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

36

Advantages and

Disadvantages

•Preserves both distances and angles

- Shapes preserved

- Can be used for measurements

• Building plans

• Manuals

•Cannot see what object really looks like

because many surfaces hidden from view

- Often we add the isometric

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

37

Axonometric Projections

Allow projection plane to move relative to object

classify by how many angles of

a corner of a projected cube are

the same

none: trimetric

two: dimetric

three: isometric

q 1

q 3q 2

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

38

Types of Axonometric

Projections

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

39

Advantages and

Disadvantages

• Lines are scaled (foreshortened) but can find
scaling factors

• Lines preserved but angles are not
- Projection of a circle in a plane not parallel to the

projection plane is an ellipse

• Can see three principal faces of a box-like object

• Some optical illusions possible
- Parallel lines appear to diverge

• Does not look real because far objects are
scaled the same as near objects

• Used in CAD applications

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

40

Oblique Projection

Arbitrary relationship between projectors and

projection plane

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

41

Advantages and

Disadvantages

• Can pick the angles to emphasize a particular
face

- Architecture: plan oblique, elevation oblique

• Angles in faces parallel to projection plane are
preserved while we can still see “around” side

• In physical world, cannot create with simple
camera; possible with bellows camera or special
lens (architectural)

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

42

Perspective Projection

Projectors coverge at center of projection

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

43

Vanishing Points

• Parallel lines (not parallel to the projection plan)

on the object converge at a single point in the

projection (the vanishing point)

• Drawing simple perspectives by hand uses

these vanishing point(s)

vanishing point

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

44

Three-Point Perspective

• No principal face parallel to projection plane

• Three vanishing points for cube

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

45

Two-Point Perspective

• On principal direction parallel to projection plane

• Two vanishing points for cube

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

46

One-Point Perspective

• One principal face parallel to projection plane

• One vanishing point for cube

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

47

Advantages and

Disadvantages

• Objects further from viewer are projected

smaller than the same sized objects closer to

the viewer (diminution)

- Looks realistic

• Equal distances along a line are not projected

into equal distances (nonuniform foreshortening)

• Angles preserved only in planes parallel to the

projection plane

• More difficult to construct by hand than parallel

projections (but not more difficult by computer)

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

48

Introduction to Computer

Graphics with WebGL

Ed Angel

Professor Emeritus of Computer Science

Founding Director, Arts, Research,

Technology and Science Laboratory

University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

49

Computer Viewing

Positioning the Camera

Ed Angel

Professor Emeritus of Computer Science

University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

50

Objectives

• Introduce the mathematics of projection

• Introduce WebGL viewing functions in

MV.js

•Look at alternate viewing APIs

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

From the Beginning

• In the beginning:

- fixed function pipeline

- Model-View and Projection Transformation

- Predefined frames: model, object, camera, clip,

ndc, window

•After deprecation

- pipeline with programmable shaders

- no transformations

- clip, ndc window frames

•MV.js reintroduces original capabilities
51Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

52

Computer Viewing

•There are three aspects of the viewing

process, all of which are implemented in

the pipeline,

- Positioning the camera

• Setting the model-view matrix

- Selecting a lens

• Setting the projection matrix

- Clipping

• Setting the view volume

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

53

The WebGL Camera

• In WebGL, initially the object and camera

frames are the same

- Default model-view matrix is an identity

•The camera is located at origin and points

in the negative z direction

•WebGL also specifies a default view

volume that is a cube with sides of length 2

centered at the origin

- Default projection matrix is an identity

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

54

Default Projection

Default projection is orthogonal

clipped out

z=0

2

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

55

Moving the Camera Frame

• If we want to visualize objects with both positive

and negative z values we can either

- Move the camera in the positive z direction

• Translate the camera frame

- Move the objects in the negative z direction

• Translate the world frame

•Both of these views are equivalent and are

determined by the model-view matrix

- Want a translation (translate(0.0,0.0,-d);)

-d > 0

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

56

Moving Camera back

from Origin

default frames

frames after translation by –d

d > 0

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

57

Moving the Camera

•We can move the camera to any desired

position by a sequence of rotations and

translations

•Example: side view

- Rotate the camera

- Move it away from origin

- Model-view matrix C = TR

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

58

WebGL code

•Remember that last transformation

specified is first to be applied

// Using MV.js

var t = translate (0.0, 0.0, -d);

var ry = rotateY(90.0);

var m = mult(t, ry);

or

var m = mult(translate (0.0, 0.0, -d),

rotateY(90.0););

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

59

lookAt

LookAt(eye, at, up)

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

60

The lookAt Function

• The GLU library contained the function gluLookAt

to form the required modelview matrix through a

simple interface

• Note the need for setting an up direction

• Replaced by lookAt() in MV.js

- Can concatenate with modeling transformations

• Example: isometric view of cube aligned with axes

var eye = vec3(1.0, 1.0, 1.0);

var at = vec3(0.0, 0.0, 0.0);

var up = vec3(0.0, 1.0, 0.0);

var mv = LookAt(eye, at, up);
Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

61

Other Viewing APIs

•The LookAt function is only one possible

API for positioning the camera

•Others include

- View reference point, view plane normal, view

up (PHIGS, GKS-3D)

- Yaw, pitch, roll

- Elevation, azimuth, twist

- Direction angles

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

62

Introduction to Computer

Graphics with WebGL

Ed Angel

Professor Emeritus of Computer Science

Founding Director, Arts, Research,

Technology and Science Laboratory

University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

63

Computer Viewing

Projection

Ed Angel

Professor Emeritus of Computer Science

University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

64

Objectives

• Introduce the mathematics of projection

•Add WebGL projection functions in

MV.js

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

65

Projections and

Normalization

•The default projection in the eye (camera)

frame is orthogonal

•For points within the default view volume

•Most graphics systems use view normalization

- All other views are converted to the default view by

transformations that determine the projection matrix

- Allows use of the same pipeline for all views

xp = x

yp = y

zp = 0

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

66

Homogeneous Coordinate

Representation

xp = x

yp = y

zp = 0

wp = 1

pp = Mp

M =



















1000

0000

0010

0001

In practice, we can let M = I and set

the z term to zero later

default orthographic projection

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

67

Simple Perspective

•Center of projection at the origin

•Projection plane z = d, d < 0

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

68

Perspective Equations

Consider top and side views

xp =

dz

x

/

dz

x

/
yp =

dz

y

/
zp = d

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

69

Homogeneous

Coordinate Form

M =



















0/100

0100

0010

0001

d

consider q = Mp where



















1

z

y

x



















dz

z

y

x

/

q =  p =

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

70

Perspective Division

•However w  1, so we must divide by w to

return from homogeneous coordinates

•This perspective division yields

the desired perspective equations

•We will consider the corresponding clipping

volume with mat.h functions that are

equivalent to deprecated OpenGL functions

xp =
dz

x

/
yp =

dz

y

/
zp = d

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

71

WebGL Orthogonal

Viewing
ortho(left,right,bottom,top,near,far)

near and far measured from camera

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

72

WebGL Perspective

frustum(left,right,bottom,top,near,far)

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

73

Using Field of View

•With frustum it is often difficult to get the

desired view

•perpective(fovy, aspect, near, far)

often provides a better interface

aspect = w/h

front plane

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Computing Matrices

•Compute in JS file,

send to vertex

shader with

gl.uniformMatrix4fv

•Dynamic: update in

render() or shader

74Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

perspective2.js

75

var render = function(){

gl.clear(gl.COLOR_BUFFER_BIT | gl.DEPTH_BUFFER_BIT);

eye = vec3(radius*Math.sin(theta)*Math.cos(phi),

radius*Math.sin(theta)*Math.sin(phi), radius*Math.cos(theta));

modelViewMatrix = lookAt(eye, at , up);

projectionMatrix = perspective(fovy, aspect, near, far);

gl.uniformMatrix4fv(modelViewMatrixLoc, false,

flatten(modelViewMatrix));

gl.uniformMatrix4fv(projectionMatrixLoc, false,

flatten(projectionMatrix));

gl.drawArrays(gl.TRIANGLES, 0, NumVertices);

requestAnimFrame(render);

}
Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

vertex shader

76

attribute vec4 vPosition;

attribute vec4 vColor;

varying vec4 fColor;

uniform mat4 modelViewMatrix;

uniform mat4 projectionMatrix;

void main() {

gl_Position = projectionMatrix*modelViewMatrix*vPosition;

fColor = vColor;

}

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

