Introduction to Computer
<Ml Graphics with WebGL

Ed Angel
Professor Emeritus of Computer Science

Founding Director, Arts, Research,
Technology and Science Laboratory

University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

The Virtual Trackball

Ed Angel
Professor Emeritus of Computer Science
University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Objectives

i

* This is an optional lecture that

- Introduces the use of graphical (virtual)
devices that can be created using WebGL

- Reinforce the benefit of not using direction
angles and Euler angles

- Makes use of transformations

- Leads to reusable code that will be helpful
later

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

- Physical Trackball

 The trackball is an “upside down”™ mouse

* If there is little friction between the ball and the
rollers, we can give the ball a push and it will
keep rolling yielding continuous changes

* Two possible modes of operation
- Continuous pushing or tracking hand motion
- Spinning

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

" A Trackball from a Mouse

* Problem: we want to get the two behavior
modes from a mouse

 \We would also like the mouse to emulate
a frictionless (ideal) trackball

* Solve In two steps
- Map trackball position to mouse position
- Use event listeners to handle the proper modes

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

" Using Quaternions

* Quaternion arithmetic works well for
representing rotations around the origin

« Can use directly avoiding rotation
matrices In the virtual trackball

* Code was made available long ago (pre
shader) by SGI

* Quaternion shaders are simple

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

" Trackball Frame

"

origin at center of ball

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Projection of Trackball

< Position

*We can relate position on trackball to
position on a normalized mouse pad by
projecting orthogonally onto pad

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

M Reversing Projection

* Because both the pad and the upper
hemisphere of the ball are two-
dimensional surfaces, we can reverse the
projection

* A point (X,z) on the mouse pad
corresponds to the point (x,y,z) on the
upper hemisphere where

y:\/rZ—XZ_z2 If r>|x>0,r>|z[>0

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

" Computing Rotations

* Suppose that we have two points that
were obtained from the mouse.

*We can project them up to the
hemisphere to points p, and p,

* These points determine a great circle on
the sphere

*We can rotate from p, to p, by finding the
proper axis of rotation and the angle
between the points

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 10

- Using the cross product

* The axis of rotation is given by the normal
to the plane determined by the origin, p,,
and p,

N=p;x Py Ayt

R T T T - N ~\\
- e S
~%
LY
\\
P
/ 7

n

/

Zz

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 1

- Obtaining the angle

* The angle between p, and p, is given by

n|

| sin 6] =
[P, [P |

* If we move the mouse slowly or sample its
position frequently, then 6 will be small
and we can use the approximation

sin0 ~ 0

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 12

- Implementing with WebGL

* Define actions in terms of three booleans

- trackingMouse: If true update trackball
position

- redrawContinue: If true, idle function
posts a redisplay

- trackballMove: If tfrue, update rotation
matrix

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 13

- Vertex Shader |

In vec4 vPosition;

In vec4 vColor;

out vec4 color;

uniform vec4 rquat; // rotation quaternion

[/ quaternion multiplier
vecd multq(vec4 a, vec4 b)

{

return(vecd(a.x*b.x - dot(a.yzw, b.yzw),
a.X*b.yzw+b.x*a.yzw+cross(b.yzw, a.yzw)));

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

14

" Vertex Shader Il

// Inverse quaternion
vecd invg(vecs a)
{ return(vec4(a.x, -a.yzw)/dot(a,a)); }

void main() {

vec3 axis = rguat.yxwi;

float theta = rquat.x;

veca r, p;

p = vec4(0.0, vPosition.xyz); // input point quaternion

p = multq(rquat, multq(p, invq(rquat))); // rotated point quaternion

gl_Position = vec4(p.yzw, 1.0); // back to homogeneous coordinates
color = vColor;

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 15

