
1

Introduction to Computer

Graphics with WebGL

Ed Angel

Professor Emeritus of Computer Science

Founding Director, Arts, Research,

Technology and Science Laboratory

University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

The Virtual Trackball

Ed Angel

Professor Emeritus of Computer Science

University of New Mexico

2Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

3

Objectives

•This is an optional lecture that

- Introduces the use of graphical (virtual)

devices that can be created using WebGL

- Reinforce the benefit of not using direction

angles and Euler angles

- Makes use of transformations

- Leads to reusable code that will be helpful

later

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

4

Physical Trackball

• The trackball is an “upside down” mouse

• If there is little friction between the ball and the
rollers, we can give the ball a push and it will
keep rolling yielding continuous changes

• Two possible modes of operation
- Continuous pushing or tracking hand motion

- Spinning

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

5

A Trackball from a Mouse

•Problem: we want to get the two behavior

modes from a mouse

•We would also like the mouse to emulate

a frictionless (ideal) trackball

•Solve in two steps

- Map trackball position to mouse position

- Use event listeners to handle the proper modes

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Using Quaternions

•Quaternion arithmetic works well for

representing rotations around the origin

•Can use directly avoiding rotation

matrices in the virtual trackball

•Code was made available long ago (pre

shader) by SGI

•Quaternion shaders are simple

6Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

7

Trackball Frame

origin at center of ball

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

8

Projection of Trackball

Position

•We can relate position on trackball to

position on a normalized mouse pad by

projecting orthogonally onto pad

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

9

Reversing Projection

•Because both the pad and the upper

hemisphere of the ball are two-

dimensional surfaces, we can reverse the

projection

•A point (x,z) on the mouse pad

corresponds to the point (x,y,z) on the

upper hemisphere where

y =
222 zxr if r |x| 0, r |z| 0

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

10

Computing Rotations

•Suppose that we have two points that

were obtained from the mouse.

•We can project them up to the

hemisphere to points p1 and p2

•These points determine a great circle on

the sphere

•We can rotate from p1 to p2 by finding the

proper axis of rotation and the angle

between the points

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

11

Using the cross product

•The axis of rotation is given by the normal

to the plane determined by the origin, p1 ,

and p2

n = p1 p2

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

12

Obtaining the angle

•The angle between p1 and p2 is given by

• If we move the mouse slowly or sample its

position frequently, then q will be small

and we can use the approximation

| sin q| =
||||

||

21 pp

n

sin q q

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

13

Implementing with WebGL

•Define actions in terms of three booleans

•trackingMouse: if true update trackball
position

•redrawContinue: if true, idle function
posts a redisplay

•trackballMove: if true, update rotation
matrix

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Vertex Shader I

14

in vec4 vPosition;

in vec4 vColor;

out vec4 color;

uniform vec4 rquat; // rotation quaternion

// quaternion multiplier

vec4 multq(vec4 a, vec4 b)

{

return(vec4(a.x*b.x - dot(a.yzw, b.yzw),

a.x*b.yzw+b.x*a.yzw+cross(b.yzw, a.yzw)));

}

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Vertex Shader II

15

// inverse quaternion

vec4 invq(vec4 a)

{ return(vec4(a.x, -a.yzw)/dot(a,a)); }

void main() {

vec3 axis = rquat.yxw;

float theta = rquat.x;

vec4 r, p;

p = vec4(0.0, vPosition.xyz); // input point quaternion

p = multq(rquat, multq(p, invq(rquat))); // rotated point quaternion

gl_Position = vec4(p.yzw, 1.0); // back to homogeneous coordinates

color = vColor;

}
Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

