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Objectives

•This is an optional lecture that 

- Introduces the use of graphical (virtual) 

devices that can be created using WebGL

- Reinforce the benefit of not using direction 

angles and Euler angles

- Makes use of transformations

- Leads to reusable code that will be helpful 

later
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Physical Trackball

• The trackball is an “upside down” mouse

• If there is little friction between the ball and the 
rollers, we can give the ball a push and it will 
keep rolling yielding continuous changes

• Two possible modes of operation
- Continuous pushing or tracking hand motion

- Spinning
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A Trackball from a Mouse

•Problem: we want to get the two behavior 

modes from a mouse

•We would also like the mouse to emulate 

a frictionless (ideal) trackball

•Solve in two steps

- Map trackball position to mouse position

- Use event listeners to handle the proper modes
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Using Quaternions

•Quaternion arithmetic works well for 

representing rotations around the origin

•Can use directly avoiding rotation 

matrices in the virtual trackball

•Code was made available long ago (pre 

shader) by SGI

•Quaternion shaders are simple
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Trackball Frame

origin at center of ball
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Projection of Trackball 

Position

•We can relate position on trackball to 

position on a normalized mouse pad by 

projecting orthogonally onto pad
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Reversing Projection

•Because both the pad and the upper 

hemisphere of the ball are two-

dimensional surfaces, we can reverse the 

projection

•A point (x,z) on the mouse pad 

corresponds to the point (x,y,z) on the 

upper hemisphere where

y =
222 zxr  if  r  |x| 0, r  |z|  0
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Computing Rotations

•Suppose that we have two points that 

were obtained from the mouse. 

•We can project them up to the 

hemisphere to points p1 and p2

•These points determine a great circle on 

the sphere

•We can rotate from p1 to p2 by finding the 

proper axis of rotation and the angle 

between the points
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Using the cross product

•The axis of rotation is given by the normal 

to the plane determined by the origin, p1 , 

and p2 

n = p1  p2
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Obtaining the angle

•The angle between p1 and p2 is given by

• If we move the mouse slowly or sample its 

position frequently, then q will be small 

and we can use the approximation 

| sin q| = 
||||

||

21 pp

n

sin q  q
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Implementing with WebGL

•Define actions in terms of three booleans

•trackingMouse: if true update trackball 
position

•redrawContinue: if true, idle function 
posts a redisplay

•trackballMove: if true, update rotation 
matrix
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Vertex Shader I
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in vec4 vPosition;

in vec4 vColor;

out vec4 color;

uniform vec4 rquat; // rotation quaternion

// quaternion multiplier

vec4 multq(vec4 a, vec4 b)

{

return(vec4(a.x*b.x - dot(a.yzw, b.yzw), 

a.x*b.yzw+b.x*a.yzw+cross(b.yzw, a.yzw)));

}

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 



Vertex Shader II
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// inverse quaternion

vec4 invq(vec4 a)

{ return(vec4(a.x, -a.yzw)/dot(a,a)); }

void main() {

vec3 axis = rquat.yxw;

float theta = rquat.x;

vec4 r, p;

p = vec4(0.0, vPosition.xyz);  // input point quaternion

p = multq(rquat, multq(p, invq(rquat))); // rotated point quaternion

gl_Position = vec4( p.yzw, 1.0); // back to homogeneous coordinates

color = vColor;

} 
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