g+ [ntroduction to Computer
Graphics with WebGL

Ed Angel
Professor Emeritus of Computer Science

Founding Director, Arts, Research,
Technology and Science Laboratory

University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Buffers

Ed Angel
Professor Emeritus of Computer Science
University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

he Universily ol New Mexico

- Objectives
 Introduce additional WebGL buffers

* Reading and writing buffers
 Buffers and Images

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

~Jf Buffer

The Umiversily ol New Mexico

Define a buffer by its spatial resolution (n x m) and
Its depth (or precision) k, the number of bits/pixel

4
//
L
/
4
4
L
4
4
4
4
4
4
4
4
4

m ‘
e (

pixel n

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 4

~ WebGL Frame Buffer

he Universi
]

//Stencfl buffer
Depth buffer
m /Back buffer

Front buffer

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

] Where are the Buffers?

 HTML5 Canvas

- Default front and back color buffers
- Under control of local window system
- Physically on graphics card

* Depth buffer also on graphics card

e Stencil buffer
- Holds masks

* Most RGBA buffers 8 bits per component
* Latest are floating point (IEEE)

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

he Universily ol New Mexico

*l. Other Buffers

» desktop OpenGL supported other buffers
- auxiliary color buffers
- accumulation buffer
- these were on application side
- now deprecated

* GPUs have their own or attached memory
- texture buffers

- off-screen buffers
not under control of window system

may be floating point
Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

he Universily ol New Mexico

~ Images

* Framebuffer contents are unformatted
- usually RGB or RGBA
- one byte per component
- N0 compression

« Standard Web Image Formats
- Jpeg, gif, png
* WebGL has no conversion functions

- Understands standard Web formats for texture
Images

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

- The (Old) Pixel Pipeline

The Umiversily ol New Mexico

*OpenGL has a separate pipeline for pixels

- Writing pixels involves
Moving pixels from processor memory to the frame buffer
Format conversions
Mapping, Lookups, Tests

- Reading pixels
Format conversion

s Pack i

processor
memory

——» Unpack —® Pixel Map —® Lookup Table —® Pixel Test —® Frame Buffer ——

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

8" Packing and Unpacking

« Compressed or uncompressed
*Indexed or RGB

 Bit Format
- little or big endian

*WebGL (and shader-based OpenGL)
lacks most functions for packing and
unpacking

- use texture functions instead
- can implement desired functionality in fragment

Angel%n@%rden%rr%teractive Computer Graphics 7E © Addison-Wesley 2015 10

<" Deprecated Functionality

*glDrawPixels
 gICopyPixels
gIBitMap

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 1

= K Buffer Reading

* WebGL can read pixels from the framebuffer with
gl.readPixels

* Returns only 8 bit RGBA values

* In general, the format of pixels in the frame buffer is
different from that of processor memory and these
two types of memory reside in different places

- Need packing and unpacking
- Reading can be slow

« Drawing through texture functions and off-screen
memory (frame buffer objects)

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 12

~ WebGL Pixel Function

The Umiversily ol New Mexico

gl.readPixels (x,y,width,height, format, type,myimage)

start pixel in frame buffer ~ Size type of pixels

type of image pointer to processor
memory

var myimage[512*512%*4];

gl.readPixels (0,0, 512, 512, gl.RGBA,
gl.UNSIGNED BYTE, myimage) ;

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 13

<~ Render to Texture

* GPUs now Include a large amount of
texture memory that we can write into

» Advantage: fast (not under control of
window system)

» Using frame buffer objects (FBOs) we can
render into texture memory instead of the
frame buffer and then read from this
memory

- Image processing
- GPGPU

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 14

g+ [ntroduction to Computer
Graphics with WebGL

Ed Angel
Professor Emeritus of Computer Science

Founding Director, Arts, Research,
Technology and Science Laboratory

University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 15

BitBlt

Ed Angel
Professor Emeritus of Computer Science
University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

16

he Universily ol New Mexico

- Objectives

* Introduce reading and writing of blocks of
DIts or bytes

* Prepare for later discussion compositing
and blending

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 1

K Writing into Buffers

* WebGL does not contain a function for
writing bits into frame buffer
- Use texture functions instead

*We can use the fragment shader to do bit
level operations on graphics memory

* Bit Block Transfer (BitBlt) operations act
on blocks of bits with a single instruction

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 18

B BitBIt

mversily ol New Mexico

« Conceptually, we can consider all of memory as a
large two-dimensional array of pixels

* We read and write rectangular block of pixels
* The frame buffer is part of this memory

frame buffer
(destination)

meEmony Hlsource

writing into the frame buffer
Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 19

~ Writing Model

The Umiversily ol New Mexico

Read destination pixel before writing source

Source

write pixel

read pixel

y

Destination

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

20

- Bit Writing Modes

The Umiversily ol New Mexico

« Source and destination bits are combined bitwise
16 possible functions (one per column in table)

replace XOR OR
N /S
s d 01 23] 4 5 el]7]l 8 9 10111213 14 15
olo|l oo ololoolollof1 1 1 1 1 1 1 1
0| 1 o oo0lo 1 1 1|1looo o1 1 1 1
1 ol oo 1l1looff[liloo 1 1 00 1 1
1| o1 0/1lo 1lo/1lo 1 01 01 0 1

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 21

= K XOR mode

mversily ol New Mexico

* XOR is especially useful for swapping blocks of
memory such as menus that are stored off screen

If S represents screen and M represents a menu
the sequence

S «SOM

M«SEM

S «SOM
swaps S and M

« Same strategy used for rubber band lines and
Cursors

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 22

he Universily ol New Mexico

<~ Cursor Movement

« Consider what happens as we move a
cursor across the display

*We cover parts of objects

* Must return to original colors when cursor
moves away

-AQ

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

23

he Universily ol New Mexico

*l. Rubber Band Line

* FIX one point
 Draw line to location of cursor

* Must return state of crossed objects when
line moves

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 24

