
1

Introduction to Computer

Graphics with WebGL

Ed Angel

Professor Emeritus of Computer Science

Founding Director, Arts, Research,

Technology and Science Laboratory

University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Buffers

Ed Angel

Professor Emeritus of Computer Science

University of New Mexico

2Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

3

Objectives

• Introduce additional WebGL buffers

•Reading and writing buffers

•Buffers and Images

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

4

Buffer

Define a buffer by its spatial resolution (n x m) and

its depth (or precision) k, the number of bits/pixel

pixel

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

5

WebGL Frame Buffer

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

6

Where are the Buffers?

•HTML5 Canvas
- Default front and back color buffers

- Under control of local window system

- Physically on graphics card

•Depth buffer also on graphics card

•Stencil buffer
- Holds masks

•Most RGBA buffers 8 bits per component

•Latest are floating point (IEEE)

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Other Buffers

•desktop OpenGL supported other buffers

- auxiliary color buffers

- accumulation buffer

- these were on application side

- now deprecated

•GPUs have their own or attached memory

- texture buffers

- off-screen buffers

• not under control of window system

• may be floating point
7Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Images

•Framebuffer contents are unformatted

- usually RGB or RGBA

- one byte per component

- no compression

•Standard Web Image Formats

- jpeg, gif, png

•WebGL has no conversion functions

- Understands standard Web formats for texture

images

8Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

9

The (Old) Pixel Pipeline

•OpenGL has a separate pipeline for pixels

- Writing pixels involves
• Moving pixels from processor memory to the frame buffer

• Format conversions

• Mapping, Lookups, Tests

- Reading pixels
• Format conversion

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Packing and Unpacking

•Compressed or uncompressed

• Indexed or RGB

•Bit Format

- little or big endian

•WebGL (and shader-based OpenGL)

lacks most functions for packing and

unpacking

- use texture functions instead

- can implement desired functionality in fragment

shaders 10Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Deprecated Functionality

•glDrawPixels

•glCopyPixels

•glBitMap

11Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

12

Buffer Reading

• WebGL can read pixels from the framebuffer with

gl.readPixels

• Returns only 8 bit RGBA values

• In general, the format of pixels in the frame buffer is

different from that of processor memory and these

two types of memory reside in different places

- Need packing and unpacking

- Reading can be slow

•Drawing through texture functions and off-screen

memory (frame buffer objects)

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

13

WebGL Pixel Function

gl.readPixels(x,y,width,height,format,type,myimage)

start pixel in frame buffer size

type of image

type of pixels

pointer to processor

memory

var myimage[512*512*4];

gl.readPixels(0,0, 512, 512, gl.RGBA,

gl.UNSIGNED_BYTE, myimage);

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Render to Texture

•GPUs now include a large amount of

texture memory that we can write into

•Advantage: fast (not under control of

window system)

•Using frame buffer objects (FBOs) we can

render into texture memory instead of the

frame buffer and then read from this

memory

- Image processing

- GPGPU
14Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

15

Introduction to Computer

Graphics with WebGL

Ed Angel

Professor Emeritus of Computer Science

Founding Director, Arts, Research,

Technology and Science Laboratory

University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

BitBlt

Ed Angel

Professor Emeritus of Computer Science

University of New Mexico

16Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

17

Objectives

• Introduce reading and writing of blocks of

bits or bytes

•Prepare for later discussion compositing

and blending

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Writing into Buffers

•WebGL does not contain a function for

writing bits into frame buffer

- Use texture functions instead

•We can use the fragment shader to do bit

level operations on graphics memory

•Bit Block Transfer (BitBlt) operations act

on blocks of bits with a single instruction

18Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

19

BitBlt

• Conceptually, we can consider all of memory as a

large two-dimensional array of pixels

• We read and write rectangular block of pixels

• The frame buffer is part of this memory

frame buffer

(destination)
writing into the frame buffer

source
memory

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

20

Writing Model

Read destination pixel before writing source

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

21

Bit Writing Modes

• Source and destination bits are combined bitwise

• 16 possible functions (one per column in table)

replace
OR

XOR

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

22

XOR mode

• XOR is especially useful for swapping blocks of

memory such as menus that are stored off screen

• Same strategy used for rubber band lines and

cursors

If S represents screen and M represents a menu

the sequence

S S M

M S M

S S M

swaps S and M

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Cursor Movement

•Consider what happens as we move a

cursor across the display

•We cover parts of objects

•Must return to original colors when cursor

moves away

23Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Rubber Band Line

•Fix one point

•Draw line to location of cursor

•Must return state of crossed objects when

line moves

24Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

