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- Polygonal Shading

* In per vertex shading, shading calculations are
done for each vertex

- Vertex colors become vertex shades and can be
sent to the vertex shader as a vertex attribute

- Alternately, we can send the parameters to the
vertex shader and have it compute the shade

* By default, vertex shades are interpolated
across an object if passed to the fragment
shader as a varying variable (smooth shading)

 We can also use uniform variables to shade
with a single shade (flat shading)
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- Polygon Normals
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 Triangles have a single normal

- Shades at the vertices as computed by the
modified Phong model can be almost same

- Identical for a distant viewer (default) or if there
IS N0 specular component

« Consider model of sphere
« Want different normals at
each vertex even though
this concept is not quite
correct mathematically
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- Smooth Shading

\We can set a hew
normal at each vertex

 Easy for sphere model
- If centered at originn =p

* Now smooth shading
WOrks

* Note silhouette edge —
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- Mesh Shading

* The previous example is not general
because we knew the normal at each
vertex analytically

 For polygonal models, Gouraud proposed
we use the average of the normals around
a mesh vertex

n = (Ny+Nn,+ngtn,)/ [N +n,+ng+ny|
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<~#" Gouraud and Phong Shading

« Gouraud Shading
- Find average normal at each vertex (vertex normals)
- Apply modified Phong model at each vertex
- Interpolate vertex shades across each polygon

* Phong shading

- Find vertex normals

- Interpolate vertex normals across edges

- Interpolate edge normals across polygon

- Apply modified Phong model at each fragment
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- Comparison

* If the polygon mesh approximates surfaces with
a high curvatures, Phong shading may look
smooth while Gouraud shading may show edges

* Phong shading requires much more work than
Gouraud shading

- Until recently not available in real time systems
- Now can be done using fragment shaders

» Both need data structures to represent meshes
SO we can obtain vertex normals
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<" Vertex Lighting Shaders |

/] vertex shader

attribute vec4 vPosition;

attribute vec4 vNormal,

varying vec4 fColor;

uniform vec4 ambientProduct, diffuseProduct, specularProduct;
uniform mat4 modelViewMatrix;

uniform mat4 projectionMatrix;

uniform vec4 lightPosition;

uniform float shininess;

void main()

{
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< - Vertex Lighting Shaders |l

vec3 pos = -(modelViewMatrix * vPosition).xyz;
vec3 light = lightPosition.xyz;
vec3 L = normalize( light - pos );
vec3 E = normalize( -pos );
vec3 H =normalize( L + E);
// Transform vertex normal into eye coordinates
vec3 N = normalize( (modelViewMatrix*vNormal).xyz);

/I Compute terms in the illumination equation
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~#" Vertex Lighting Shaders Il

// Compute terms in the illumination equation
vecd ambient = AmbientProduct;

float Kd = max( dot(L, N), 0.0 );

vecd diffuse = Kd*DiffuseProduct;

float Ks = pow( max(dot(N, H), 0.0), Shininess ),

vecd specular = Ks * SpecularProduct;

If( dot(L, N) <0.0) specular = vec4(0.0, 0.0, 0.0, 1.0);
gl_Position = Projection * ModelView * vPosition;

fColor = ambient + diffuse + specular;
fColor.a = 1.0;

¥
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,._ Vertex Lighting Shaders IV

/[ fragment shader
precision mediump float;
varying vec4 fColor;
voidmain()

{
gl_FragColor = fColor,

¥
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/] vertex shader

attribute vec4 vPosition;
attribute vec4 vNormal;

varying vec3 N, L, E;

uniform mat4 modelViewMatrix;
uniform mat4 projectionMatrix;
uniform vec4 lightPosition;

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

15



~®" Fragment Lighting Shaders II

void main()
{
vec3 pos = -(modelViewMatrix * vPosition).xyz;
vec3 light = lightPosition.xyz,
L = normalize( light - pos );
E = -pos;
N = normalize( (modelViewMatrix*vNormal).xyz);
gl_Position = projectionMatrix * modelViewMatrix * vPosition;

b
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<-#" Fragment Lighting Shaders Il
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// fragment shader
precision mediump float;

uniform vec4 ambientProduct;
uniform vec4 diffuseProduct;
uniform vec4 specularProduct;
uniform float shininess;
varying vec3 N, L, E;

void main()

{
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<#" Fragment Lighting Shaders IV

vec4 fColor;
vec3 H =normalize(L + E);
vec4 ambient = ambientProduct;
float Kd = max( dot(L, N), 0.0 );
vecd diffuse = Kd*diffuseProduct;
float Ks = pow( max(dot(N, H), 0.0), shininess );
vecd specular = Ks * specularProduct;
If( dot(L, N) <0.0) specular = vec4(0.0, 0.0, 0.0, 1.0);
fColor = ambient + diffuse +specular;
fColor.a = 1.0;
gl_FragColor = fColor;
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- Teapot Examples
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Objectives

* Nontrivial two-dimensional application

* Important method for
- Contour plots
- Implicit function visualization

» Extends to important method for volume
visualization

* This lecture is optional but should be
Interesting to most of you
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<8 Displaying Implicit Functions
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* Consider the implicit function

g(x.y)=0
*Glven an x, we cannot in general find a
corresponding y

*Given an x and a y, we can test if they are
on the curve
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<" Height Fields and Contours

*In many applications, we have the heights
given by a function of the form z=f(x,y)

*To find all the points that have a given
height t, we have to solve the implicit
equation g(x,y)=f(x,y)-t=0

e Such a function determines the isocurves
or contours of f for the iIsovalue t
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- Marching Squares
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* Displays isocurves or contours for functions f(x,y) =
t

« Sample f(x,y) on a regular grid yielding samples
{fi(x,y)}

* These samples can be greater than, less than, or
equal tot

» Consider four samples f;;(X,y), fi.1;(%Y), firpjr1(X.Y),
1:i,j+1(X’y)
* These samples correspond to the corners of a cell

 Color the corners by whether they exceed or are
less than the contour value t
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- Cells and Coloring

ﬁ._lh-f =1 ﬁﬂ,_,l-rf >1 .

ﬁl_}":[ ﬁ"'ful:"t

(a] (b)
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~ Occam’s Razor

« Contour must intersect edge between a
black and white vertex an odd number of

times
* Pick simplest interpretation: one crossing
® @ @ ¢
— D

@\\ L T

(a) (k)
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- Unique Cases

 Taking out rotational and color swapping
symmetries leaves four uniqgue cases

* First three have a simple interpretation
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Ambiguity Problem

* Diagonally opposite cases have two
equally simple possible interpretations

O
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Ambiguity Example

* Two different possibilities below
* More possibilities on next slide

® * ® ® * L

<09 0>
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" Ambiguity Problem

BN TESS
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* Problem is a sampling problem
- Not enough samples to know the local detall
- No solution in a mathematical sense without extra
Information
* More of a problem with volume extension
(marching cubes) where selecting “wrong”
Interpretation can leave a hole in a surface

* Multiple methods in literature to give better
appearance
- Supersampling
- Look at larger area before deciding
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- Interpolating Edges

*We can compute where contour intersects
edge in multiple ways
- Halfway between vertics

- Interpolated based on difference between
contour value and value at vertices
o ®
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<& Example: Oval of Cassini
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f(x,y)=(x?+y?+a?)?-4a>x*-b*
Depending on a and b we can have 0, 1, or 2 curves

.
midpoint intersections o .
., s

—
. — \_\—\_ff
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|
- T

Interpolating intersections
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- Contour Map

 Diamond Head,
Oahu Hawali

 Shows contours
for many
contour values
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= K Marching Cubes
* |sosurface: solution of g(x,y,z)=c

* Use same argument to derive method but
with a cubic cell (8 vertices, 256 colorings)

e Standard method of volume visualization

* Suggested by Lorensen and Kline before
marching squares

* Note inherent parallelism of both
marching cubes and marching squares
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