g+ [ntroduction to Computer
Graphics with WebGL

Ed Angel
Professor Emeritus of Computer Science

Founding Director, Arts, Research,
Technology and Science Laboratory

University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

{“l
The University ol N

Polygonal Shading

Ed Angel
Professor Emeritus of Computer Science
University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

he Universily ol New Mexico

- Polygonal Shading

* In per vertex shading, shading calculations are
done for each vertex

- Vertex colors become vertex shades and can be
sent to the vertex shader as a vertex attribute

- Alternately, we can send the parameters to the
vertex shader and have it compute the shade

* By default, vertex shades are interpolated
across an object if passed to the fragment
shader as a varying variable (smooth shading)

 We can also use uniform variables to shade
with a single shade (flat shading)

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 3

- Polygon Normals

he Universily ol New Mexico

 Triangles have a single normal

- Shades at the vertices as computed by the
modified Phong model can be almost same

- Identical for a distant viewer (default) or if there
IS N0 specular component

« Consider model of sphere
« Want different normals at
each vertex even though
this concept is not quite
correct mathematically

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 4

he Universily ol New Mexico

- Smooth Shading

\We can set a hew
normal at each vertex

 Easy for sphere model
- If centered at originn =p

* Now smooth shading
WOrks

* Note silhouette edge —

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 5

TI'he Universily ol New Mexico

- Mesh Shading

* The previous example is not general
because we knew the normal at each
vertex analytically

 For polygonal models, Gouraud proposed
we use the average of the normals around
a mesh vertex

n = (Ny+Nn,+ngtn,)/ [N +n,+ng+ny|

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 6

<~#" Gouraud and Phong Shading

« Gouraud Shading
- Find average normal at each vertex (vertex normals)
- Apply modified Phong model at each vertex
- Interpolate vertex shades across each polygon

* Phong shading

- Find vertex normals

- Interpolate vertex normals across edges

- Interpolate edge normals across polygon

- Apply modified Phong model at each fragment

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 !

he Universily ol New Mexico

- Comparison

* If the polygon mesh approximates surfaces with
a high curvatures, Phong shading may look
smooth while Gouraud shading may show edges

* Phong shading requires much more work than
Gouraud shading

- Until recently not available in real time systems
- Now can be done using fragment shaders

» Both need data structures to represent meshes
SO we can obtain vertex normals

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 8

g+ [ntroduction to Computer
Graphics with WebGL

Ed Angel
Professor Emeritus of Computer Science

Founding Director, Arts, Research,
Technology and Science Laboratory

University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

{“l
The University ol New Mexico

Per Vertex and Per Fragment
Shaders

Ed Angel
Professor Emeritus of Computer Science
University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

10

<" Vertex Lighting Shaders |

/] vertex shader

attribute vec4 vPosition;

attribute vec4 vNormal,

varying vec4 fColor;

uniform vec4 ambientProduct, diffuseProduct, specularProduct;
uniform mat4 modelViewMatrix;

uniform mat4 projectionMatrix;

uniform vec4 lightPosition;

uniform float shininess;

void main()

{

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 1

< - Vertex Lighting Shaders |l

vec3 pos = -(modelViewMatrix * vPosition).xyz;
vec3 light = lightPosition.xyz;
vec3 L = normalize(light - pos);
vec3 E = normalize(-pos);
vec3 H =normalize(L + E);
// Transform vertex normal into eye coordinates
vec3 N = normalize((modelViewMatrix*vNormal).xyz);

/I Compute terms in the illumination equation

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 12

~#" Vertex Lighting Shaders Il

// Compute terms in the illumination equation
vecd ambient = AmbientProduct;

float Kd = max(dot(L, N), 0.0);

vecd diffuse = Kd*DiffuseProduct;

float Ks = pow(max(dot(N, H), 0.0), Shininess),

vecd specular = Ks * SpecularProduct;

If(dot(L, N) <0.0) specular = vec4(0.0, 0.0, 0.0, 1.0);
gl_Position = Projection * ModelView * vPosition;

fColor = ambient + diffuse + specular;
fColor.a = 1.0;

¥

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 13

,._ Vertex Lighting Shaders IV

/[fragment shader
precision mediump float;
varying vec4 fColor;
voidmain()

{
gl_FragColor = fColor,

¥

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

14

~&" Fragment Lighting Shaders |

he Universily ol New Mexi

/] vertex shader

attribute vec4 vPosition;
attribute vec4 vNormal;

varying vec3 N, L, E;

uniform mat4 modelViewMatrix;
uniform mat4 projectionMatrix;
uniform vec4 lightPosition;

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

15

~®" Fragment Lighting Shaders II

void main()
{
vec3 pos = -(modelViewMatrix * vPosition).xyz;
vec3 light = lightPosition.xyz,
L = normalize(light - pos);
E = -pos;
N = normalize((modelViewMatrix*vNormal).xyz);
gl_Position = projectionMatrix * modelViewMatrix * vPosition;

b

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 16

<-#" Fragment Lighting Shaders Il

he Universily ol New Mexico

// fragment shader
precision mediump float;

uniform vec4 ambientProduct;
uniform vec4 diffuseProduct;
uniform vec4 specularProduct;
uniform float shininess;
varying vec3 N, L, E;

void main()

{

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 1

he Universily ol New Mexic

<#" Fragment Lighting Shaders IV

vec4 fColor;
vec3 H =normalize(L + E);
vec4 ambient = ambientProduct;
float Kd = max(dot(L, N), 0.0);
vecd diffuse = Kd*diffuseProduct;
float Ks = pow(max(dot(N, H), 0.0), shininess);
vecd specular = Ks * specularProduct;
If(dot(L, N) <0.0) specular = vec4(0.0, 0.0, 0.0, 1.0);
fColor = ambient + diffuse +specular;
fColor.a = 1.0;
gl_FragColor = fColor;

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 18

- Teapot Examples

& &
«H <

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

g+ [ntroduction to Computer
Graphics with WebGL

Ed Angel
Professor Emeritus of Computer Science

Founding Director, Arts, Research,
Technology and Science Laboratory

University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 20

he Universily ol New Mexico

~ Marching Squares

Ed Angel
Professor Emeritus of Computer Science
University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

21

{m

Objectives

* Nontrivial two-dimensional application

* Important method for
- Contour plots
- Implicit function visualization

» Extends to important method for volume
visualization

* This lecture is optional but should be
Interesting to most of you

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

22

<8 Displaying Implicit Functions

he Universily ol New Mex

* Consider the implicit function

g(x.y)=0
*Glven an x, we cannot in general find a
corresponding y

*Given an x and a y, we can test if they are
on the curve

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 23

<" Height Fields and Contours

*In many applications, we have the heights
given by a function of the form z=f(x,y)

*To find all the points that have a given
height t, we have to solve the implicit
equation g(x,y)=f(x,y)-t=0

e Such a function determines the isocurves
or contours of f for the iIsovalue t

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 24

- Marching Squares

he Universily ol New Mexico

* Displays isocurves or contours for functions f(x,y) =
t

« Sample f(x,y) on a regular grid yielding samples
{fi(x,y)}

* These samples can be greater than, less than, or
equal tot

» Consider four samples f;;(X,y), fi.1;(%Y), firpjr1(X.Y),
1:i,j+1(X’y)
* These samples correspond to the corners of a cell

 Color the corners by whether they exceed or are
less than the contour value t

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 25

- Cells and Coloring

ﬁ._lh-f =1 ﬁﬂ,_,l-rf >1 .

ﬁl_}":[ﬁ"'ful:"t

(a] (b)

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

26

he Universily ol New Mexico

~ Occam’s Razor

« Contour must intersect edge between a
black and white vertex an odd number of

times
* Pick simplest interpretation: one crossing
® @ @ ¢
— D

@\\ L T

(a) (k)
Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 21

4!11

The University ol New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

28

he Universily ol New Mexico

- Unique Cases

 Taking out rotational and color swapping
symmetries leaves four uniqgue cases

* First three have a simple interpretation

® ® O ® © * O Q

@ @ O e O O O o

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 29

TI'he Universily ol New Mexico

R

Ambiguity Problem

* Diagonally opposite cases have two
equally simple possible interpretations

O

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 30

he Universily ol New Mexico

{m

Ambiguity Example

* Two different possibilities below
* More possibilities on next slide

® * ® ® * L

<09 0>

T O—e—e S O—e—e

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

31

" Ambiguity Problem

BN TESS

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 32

<#" |s Problem Resolvable?

niversily ol New Mexico

* Problem is a sampling problem
- Not enough samples to know the local detall
- No solution in a mathematical sense without extra
Information
* More of a problem with volume extension
(marching cubes) where selecting “wrong”
Interpretation can leave a hole in a surface

* Multiple methods in literature to give better
appearance
- Supersampling
- Look at larger area before deciding

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

33

he Universily ol New Mexico

- Interpolating Edges

*We can compute where contour intersects
edge in multiple ways
- Halfway between vertics

- Interpolated based on difference between
contour value and value at vertices
o ®

-‘-‘-‘1‘"‘"--..._‘_‘

N

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 34

<& Example: Oval of Cassini

he Universily ol New Mexic

f(x,y)=(x?+y?+a?)?-4a>x*-b*
Depending on a and b we can have 0, 1, or 2 curves

.
midpoint intersections o .
., s

—
. — _\—_ff
NN

|
- T

Interpolating intersections

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 35

- Contour Map

 Diamond Head,
Oahu Hawali

 Shows contours
for many
contour values

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

36

= K Marching Cubes
* |sosurface: solution of g(x,y,z)=c

* Use same argument to derive method but
with a cubic cell (8 vertices, 256 colorings)

e Standard method of volume visualization

* Suggested by Lorensen and Kline before
marching squares

* Note inherent parallelism of both
marching cubes and marching squares

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 37

