
1

Introduction to Computer 

Graphics with WebGL

Ed Angel

Professor Emeritus of Computer Science

Founding Director, Arts, Research, 

Technology and Science Laboratory

University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 



Polygonal Shading

Ed Angel

Professor Emeritus of Computer Science

University of New Mexico

2Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 



3

Polygonal Shading

• In per vertex shading, shading calculations are 

done for each vertex

- Vertex colors become vertex shades and can be 

sent to the vertex shader as a vertex attribute

- Alternately, we can send the parameters to the 

vertex shader and have it compute the shade

• By default, vertex shades are interpolated 

across an object if passed to the fragment 

shader as a varying variable (smooth shading)

• We can also use uniform variables to shade 

with a single shade (flat shading)
Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 



4

Polygon Normals

• Triangles have a single normal

- Shades at the vertices as computed by the 

modified Phong model can be almost same 

- Identical for a distant viewer (default) or if there 

is no specular component 

• Consider model of sphere

• Want different normals at

each vertex even though

this concept is not quite

correct mathematically

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 



5

Smooth Shading

•We can set a new 

normal at each vertex

•Easy for sphere model 

- If centered at origin n = p

•Now smooth shading 

works

•Note silhouette edge

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 



6

Mesh Shading

•The previous example is not general 

because we knew the normal at each 

vertex analytically

•For polygonal models, Gouraud proposed 

we use the average of the normals around 

a mesh vertex

n = (n1+n2+n3+n4)/ |n1+n2+n3+n4|

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 



7

Gouraud and Phong Shading

• Gouraud Shading

- Find average normal at each vertex (vertex normals)

- Apply modified Phong model at each vertex

- Interpolate vertex shades across each polygon

• Phong shading

- Find vertex normals

- Interpolate vertex normals across edges

- Interpolate edge normals across polygon

- Apply modified Phong model at each fragment

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 



8

Comparison

• If the polygon mesh approximates surfaces with 

a high curvatures, Phong shading may look 

smooth while Gouraud shading may show edges

• Phong shading requires much more work than 

Gouraud shading

- Until recently not available in real time systems

- Now can be done using fragment shaders

• Both need data structures to represent meshes 

so we can obtain vertex normals

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 



9

Introduction to Computer 

Graphics with WebGL

Ed Angel

Professor Emeritus of Computer Science

Founding Director, Arts, Research, 

Technology and Science Laboratory

University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 



Per Vertex and Per Fragment 

Shaders

Ed Angel

Professor Emeritus of Computer Science

University of New Mexico

10Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 



Vertex Lighting Shaders I

11

// vertex shader

attribute vec4 vPosition;

attribute vec4 vNormal;

varying vec4 fColor;

uniform vec4 ambientProduct, diffuseProduct, specularProduct;

uniform mat4 modelViewMatrix;

uniform mat4 projectionMatrix;

uniform vec4 lightPosition;

uniform float shininess;

void main()

{
Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 



Vertex Lighting Shaders II

12

vec3 pos = -(modelViewMatrix * vPosition).xyz;

vec3 light = lightPosition.xyz;

vec3 L = normalize( light - pos );

vec3 E = normalize( -pos );

vec3 H = normalize( L + E );

// Transform vertex normal into eye coordinates

vec3 N = normalize( (modelViewMatrix*vNormal).xyz);

// Compute terms in the illumination equation

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 



Vertex Lighting Shaders III

13

// Compute terms in the illumination equation

vec4 ambient = AmbientProduct;

float Kd = max( dot(L, N), 0.0 );

vec4  diffuse = Kd*DiffuseProduct;

float Ks = pow( max(dot(N, H), 0.0), Shininess );

vec4  specular = Ks * SpecularProduct;

if( dot(L, N) < 0.0 )  specular = vec4(0.0, 0.0, 0.0, 1.0); 

gl_Position = Projection * ModelView * vPosition;

fColor = ambient + diffuse + specular;

fColor.a = 1.0;

}

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 



Vertex Lighting Shaders IV

14

// fragment shader

precision mediump float;

varying vec4 fColor;

voidmain()

{

gl_FragColor = fColor;

}

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 



Fragment Lighting Shaders I

15

// vertex shader 

attribute vec4 vPosition;

attribute vec4 vNormal;

varying vec3 N, L, E;

uniform mat4 modelViewMatrix;

uniform mat4 projectionMatrix;

uniform vec4 lightPosition;

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 



Fragment Lighting Shaders II

16

void main()

{

vec3 pos = -(modelViewMatrix * vPosition).xyz;

vec3 light = lightPosition.xyz;

L = normalize( light - pos );

E =  -pos;

N = normalize( (modelViewMatrix*vNormal).xyz);

gl_Position = projectionMatrix * modelViewMatrix * vPosition;

};

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 



Fragment Lighting Shaders III

17

// fragment shader

precision mediump float;

uniform vec4 ambientProduct;

uniform vec4 diffuseProduct;

uniform vec4 specularProduct;

uniform float shininess;

varying vec3 N, L, E;

void main()

{

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 



Fragment Lighting Shaders IV

18

vec4 fColor;

vec3 H = normalize( L + E );

vec4 ambient = ambientProduct;

float Kd = max( dot(L, N), 0.0 );

vec4  diffuse = Kd*diffuseProduct;

float Ks = pow( max(dot(N, H), 0.0), shininess );

vec4  specular = Ks * specularProduct;

if( dot(L, N) < 0.0 ) specular = vec4(0.0, 0.0, 0.0, 1.0);

fColor = ambient + diffuse +specular;

fColor.a = 1.0;

gl_FragColor = fColor;

}

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 



Teapot Examples

19Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 



20

Introduction to Computer 

Graphics with WebGL

Ed Angel

Professor Emeritus of Computer Science

Founding Director, Arts, Research, 

Technology and Science Laboratory

University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 



21

Marching Squares

Ed Angel

Professor Emeritus of Computer Science

University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 



22

Objectives

•Nontrivial two-dimensional application

• Important method for 
- Contour plots

- Implicit function visualization

•Extends to important method for volume 
visualization

•This lecture is optional but should be 
interesting to most of you

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 



23

Displaying Implicit Functions

•Consider the implicit function

g(x,y)=0

•Given an x, we cannot in general find a 

corresponding y

•Given an x and a y, we can test if they are 

on the curve

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 



24

Height Fields and Contours

• In many applications, we have the heights 

given by a function of the form z=f(x,y)

•To find all the points that have a given 

height t, we have to solve the implicit 

equation g(x,y)=f(x,y)-t=0

•Such a function determines the isocurves 

or contours of f for the isovalue t

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 



25

Marching Squares

• Displays isocurves or contours for functions f(x,y) = 
t

• Sample f(x,y) on a regular grid yielding samples 
{fij(x,y)}

• These samples can be greater than, less than, or 
equal to t

• Consider four samples fij(x,y), fi+1,j(x,y), fi+1,j+1(x,y), 
fi,j+1(x,y) 

• These samples correspond to the corners of a cell

• Color the corners by whether they exceed or are 
less than the contour value t

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 



26

Cells and Coloring

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 



27

Occam’s Razor

•Contour must intersect edge between a 

black and white vertex an odd number of 

times

•Pick simplest interpretation: one crossing

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 



28

16 Cases

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 



29

Unique Cases

•Taking out rotational and color swapping 

symmetries leaves four unique cases

•First three have a simple interpretation

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 



30

Ambiguity Problem

•Diagonally opposite cases have two 

equally simple possible interpretations

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 



31

Ambiguity Example

•Two different possibilities below

•More possibilities on next slide

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 



32

Ambiguity Problem

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 



33

Is Problem Resolvable?

• Problem is a sampling problem

- Not enough samples to know the local detail

- No solution in a mathematical sense without extra 

information

• More of a problem with volume extension 

(marching cubes) where selecting “wrong” 

interpretation can leave a hole in a surface

• Multiple methods in literature to give better 

appearance

- Supersampling

- Look at larger area before deciding

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 



34

Interpolating Edges

•We can compute where contour intersects 

edge in multiple ways

- Halfway between vertics

- Interpolated based on difference between 

contour value and value at vertices

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 



35

Example: Oval of Cassini

f(x,y)=(x2+y2+a2)2-4a2x2-b4

midpoint intersections

interpolating intersections

Depending on a and b we can have 0, 1, or 2 curves 

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 



36

Contour Map

• Diamond Head, 

Oahu Hawaii

• Shows contours 

for many 

contour values

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 



37

Marching Cubes

• Isosurface: solution of g(x,y,z)=c

•Use same argument to derive method but 

with a cubic cell (8 vertices, 256 colorings)

•Standard method of volume visualization 

•Suggested by Lorensen and Kline before 

marching squares

•Note inherent parallelism of both 

marching cubes and marching squares

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 


