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Polygonal Shading

• In per vertex shading, shading calculations are 

done for each vertex

- Vertex colors become vertex shades and can be 

sent to the vertex shader as a vertex attribute

- Alternately, we can send the parameters to the 

vertex shader and have it compute the shade

• By default, vertex shades are interpolated 

across an object if passed to the fragment 

shader as a varying variable (smooth shading)

• We can also use uniform variables to shade 

with a single shade (flat shading)
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Polygon Normals

• Triangles have a single normal

- Shades at the vertices as computed by the 

modified Phong model can be almost same 

- Identical for a distant viewer (default) or if there 

is no specular component 

• Consider model of sphere

• Want different normals at

each vertex even though

this concept is not quite

correct mathematically
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Smooth Shading

•We can set a new 

normal at each vertex

•Easy for sphere model 

- If centered at origin n = p

•Now smooth shading 

works

•Note silhouette edge
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Mesh Shading

•The previous example is not general 

because we knew the normal at each 

vertex analytically

•For polygonal models, Gouraud proposed 

we use the average of the normals around 

a mesh vertex

n = (n1+n2+n3+n4)/ |n1+n2+n3+n4|
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Gouraud and Phong Shading

• Gouraud Shading

- Find average normal at each vertex (vertex normals)

- Apply modified Phong model at each vertex

- Interpolate vertex shades across each polygon

• Phong shading

- Find vertex normals

- Interpolate vertex normals across edges

- Interpolate edge normals across polygon

- Apply modified Phong model at each fragment
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Comparison

• If the polygon mesh approximates surfaces with 

a high curvatures, Phong shading may look 

smooth while Gouraud shading may show edges

• Phong shading requires much more work than 

Gouraud shading

- Until recently not available in real time systems

- Now can be done using fragment shaders

• Both need data structures to represent meshes 

so we can obtain vertex normals
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// vertex shader

attribute vec4 vPosition;

attribute vec4 vNormal;

varying vec4 fColor;

uniform vec4 ambientProduct, diffuseProduct, specularProduct;

uniform mat4 modelViewMatrix;

uniform mat4 projectionMatrix;

uniform vec4 lightPosition;

uniform float shininess;

void main()

{
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Vertex Lighting Shaders II
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vec3 pos = -(modelViewMatrix * vPosition).xyz;

vec3 light = lightPosition.xyz;

vec3 L = normalize( light - pos );

vec3 E = normalize( -pos );

vec3 H = normalize( L + E );

// Transform vertex normal into eye coordinates

vec3 N = normalize( (modelViewMatrix*vNormal).xyz);

// Compute terms in the illumination equation
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Vertex Lighting Shaders III
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// Compute terms in the illumination equation

vec4 ambient = AmbientProduct;

float Kd = max( dot(L, N), 0.0 );

vec4  diffuse = Kd*DiffuseProduct;

float Ks = pow( max(dot(N, H), 0.0), Shininess );

vec4  specular = Ks * SpecularProduct;

if( dot(L, N) < 0.0 )  specular = vec4(0.0, 0.0, 0.0, 1.0); 

gl_Position = Projection * ModelView * vPosition;

fColor = ambient + diffuse + specular;

fColor.a = 1.0;

}
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Vertex Lighting Shaders IV
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// fragment shader

precision mediump float;

varying vec4 fColor;

voidmain()

{

gl_FragColor = fColor;

}
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// vertex shader 

attribute vec4 vPosition;

attribute vec4 vNormal;

varying vec3 N, L, E;

uniform mat4 modelViewMatrix;

uniform mat4 projectionMatrix;

uniform vec4 lightPosition;
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void main()

{

vec3 pos = -(modelViewMatrix * vPosition).xyz;

vec3 light = lightPosition.xyz;

L = normalize( light - pos );

E =  -pos;

N = normalize( (modelViewMatrix*vNormal).xyz);

gl_Position = projectionMatrix * modelViewMatrix * vPosition;

};
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// fragment shader

precision mediump float;

uniform vec4 ambientProduct;

uniform vec4 diffuseProduct;

uniform vec4 specularProduct;

uniform float shininess;

varying vec3 N, L, E;

void main()

{
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Fragment Lighting Shaders IV
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vec4 fColor;

vec3 H = normalize( L + E );

vec4 ambient = ambientProduct;

float Kd = max( dot(L, N), 0.0 );

vec4  diffuse = Kd*diffuseProduct;

float Ks = pow( max(dot(N, H), 0.0), shininess );

vec4  specular = Ks * specularProduct;

if( dot(L, N) < 0.0 ) specular = vec4(0.0, 0.0, 0.0, 1.0);

fColor = ambient + diffuse +specular;

fColor.a = 1.0;

gl_FragColor = fColor;

}
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Objectives

•Nontrivial two-dimensional application

• Important method for 
- Contour plots

- Implicit function visualization

•Extends to important method for volume 
visualization

•This lecture is optional but should be 
interesting to most of you
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Displaying Implicit Functions

•Consider the implicit function

g(x,y)=0

•Given an x, we cannot in general find a 

corresponding y

•Given an x and a y, we can test if they are 

on the curve
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Height Fields and Contours

• In many applications, we have the heights 

given by a function of the form z=f(x,y)

•To find all the points that have a given 

height t, we have to solve the implicit 

equation g(x,y)=f(x,y)-t=0

•Such a function determines the isocurves 

or contours of f for the isovalue t
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Marching Squares

• Displays isocurves or contours for functions f(x,y) = 
t

• Sample f(x,y) on a regular grid yielding samples 
{fij(x,y)}

• These samples can be greater than, less than, or 
equal to t

• Consider four samples fij(x,y), fi+1,j(x,y), fi+1,j+1(x,y), 
fi,j+1(x,y) 

• These samples correspond to the corners of a cell

• Color the corners by whether they exceed or are 
less than the contour value t
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Cells and Coloring
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Occam’s Razor

•Contour must intersect edge between a 

black and white vertex an odd number of 

times

•Pick simplest interpretation: one crossing
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16 Cases
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Unique Cases

•Taking out rotational and color swapping 

symmetries leaves four unique cases

•First three have a simple interpretation

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 



30

Ambiguity Problem

•Diagonally opposite cases have two 

equally simple possible interpretations
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Ambiguity Example

•Two different possibilities below

•More possibilities on next slide
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Ambiguity Problem
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Is Problem Resolvable?

• Problem is a sampling problem

- Not enough samples to know the local detail

- No solution in a mathematical sense without extra 

information

• More of a problem with volume extension 

(marching cubes) where selecting “wrong” 

interpretation can leave a hole in a surface

• Multiple methods in literature to give better 

appearance

- Supersampling

- Look at larger area before deciding
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Interpolating Edges

•We can compute where contour intersects 

edge in multiple ways

- Halfway between vertics

- Interpolated based on difference between 

contour value and value at vertices
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Example: Oval of Cassini

f(x,y)=(x2+y2+a2)2-4a2x2-b4

midpoint intersections

interpolating intersections

Depending on a and b we can have 0, 1, or 2 curves 
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Contour Map

• Diamond Head, 

Oahu Hawaii

• Shows contours 

for many 

contour values
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Marching Cubes

• Isosurface: solution of g(x,y,z)=c

•Use same argument to derive method but 

with a cubic cell (8 vertices, 256 colorings)

•Standard method of volume visualization 

•Suggested by Lorensen and Kline before 

marching squares

•Note inherent parallelism of both 

marching cubes and marching squares
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