
1

Introduction to Computer

Graphics with WebGL

Ed Angel

Professor Emeritus of Computer Science

Founding Director, Arts, Research,

Technology and Science Laboratory

University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Reflection and Environment Maps

Ed Angel

Professor Emeritus of Computer Science

University of New Mexico

2Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

3

Objectives

•Texture Mapping Applications

•Reflection (Environment) Maps

- Cube Maps

- Spherical Maps

•Bump Maps

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

4

Mapping Variations

smooth shading environment

mapping

bump mapping

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

5

Environment Mapping

•Environmental (reflection) mapping is

way to create the appearance of

highly reflective surfaces without ray

tracing which requires global

calculations

• Introduced in movies such as The

Abyss and Terminator 2

•Prevalent in video games

• It is a form of texture mapping
Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

6

Reflecting the Environment

V

N

R

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

7

Mapping to a Sphere

V

N

R

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

8

Hemisphere Map as a Texture

• If we map all objects to hemisphere, we

cannot tell if they are on the sphere or

anywhere else along the reflector

•Use the map on the sphere as a texture

that can be mapped onto the object

•Can use other surfaces as the

intermediate

- Cube maps

- Cylinder maps

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

9

Cube Map

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

10

Indexing into Cube Map

V
R

•Compute R = 2(N·V)N-V

•Object at origin

•Use largest magnitude component

of R to determine face of cube

•Other two components give texture

coordinates

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

11

OpenGL Implementation

•WebGL supports only cube maps

- desktop OpenGL also supports sphere maps

•First must form map

- Use images from a real camera

- Form images with WebGL

•Texture map it to object

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

12

Cube Maps

•We can form a cube map texture by

defining six 2D texture maps that

correspond to the sides of a box

•Supported by WebGL through cubemap

sampler

vec4 texColor = textureCube(mycube, texcoord);

•Texture coordinates must be 3D

- usually are given by the vertex location so we

don’t need compute separate tex coords

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

13

Environment Maps with

Shaders

•Environment maps are usually computed

in world coordinates which can differ from

object coordinates because of the

modeling matrix

- May have to keep track of modeling matrix and

pass it to the shaders as a uniform variable

•Can also use reflection map or refraction

map for effects such as simulating water

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

14

Issues

•Must assume environment is very far from

object (equivalent to the difference

between near and distant lights)

•Object cannot be concave (no self

reflections possible)

•No reflections between objects

•Need a reflection map for each object

•Need a new map if viewer moves

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

15

Forming Cube Map

•Use six cameras, each with a 90 degree

angle of view

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

16

vs Cube Image

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

17

Doing it in WebGL

gl.textureMap2D(

gl.TEXTURE_CUBE_MAP_POSITIVE_X,

level, rows, columns, border, gl.RGBA,

gl.UNSIGNED_BYTE, image1)

•Same for other five images

•Make one texture object out of the six

images

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Example

•Consider rotating cube inside a cube that

reflects the color of the walls

•Each wall is a solid color (red, green,

blue, cyan, magenta, yellow)

- Each face of room can be a texture of one texel

18

var red = new Uint8Array([255, 0, 0, 255]);

var green = new Uint8Array([0, 255, 0, 255]);

var blue = new Uint8Array([0, 0, 255, 255]);

var cyan = new Uint8Array([0, 255, 255, 255]);

var magenta = new Uint8Array([255, 0, 255, 255]);

var yellow = new Uint8Array([255, 255, 0, 255]);
Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Texture Object

19

cubeMap = gl.createTexture();

gl.bindTexture(gl.TEXTURE_CUBE_MAP, cubeMap);

gl.texImage2D(gl.TEXTURE_CUBE_MAP_POSITIVE_X, 0, gl.RGBA,

1, 1, 0, gl.RGBA,gl.UNSIGNED_BYTE, red);

gl.texImage2D(gl.TEXTURE_CUBE_MAP_NEGATIVE_X, 0, gl.RGBA,

1, 1, 0, gl.RGBA,gl.UNSIGNED_BYTE, green);

gl.texImage2D(gl.TEXTURE_CUBE_MAP_POSITIVE_Y, 0, gl.RGBA,

1, 1, 0, gl.RGBA,gl.UNSIGNED_BYTE, blue);

gl.texImage2D(gl.TEXTURE_CUBE_MAP_NEGATIVE_Y, 0, gl.RGBA,

1, 1, 0, gl.RGBA,gl.UNSIGNED_BYTE, cyan);

gl.texImage2D(gl.TEXTURE_CUBE_MAP_POSITIVE_Z, 0, gl.RGBA,

1, 1, 0, gl.RGBA,gl.UNSIGNED_BYTE, yellow);

gl.texImage2D(gl.TEXTURE_CUBE_MAP_NEGATIVE_Z, 0, gl.RGBA,

1, 1, 0, gl.RGBA,gl.UNSIGNED_BYTE, magenta);

gl.activeTexture(gl.TEXTURE0);

gl.uniform1i(gl.getUniformLocation(program, "texMap"),0);
Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Vertex Shader

20

varying vec3 R;

attribute vec4 vPosition;

attribute vec4 vNormal;

uniform mat4 modelViewMatrix;

uniform mat4 projectionMatrix;

uniform vec3 theta;

void main(){

vec3 angles = radians(theta);

// compute rotation matrices rx, ry, rz here

mat4 ModelViewMatrix = modelViewMatrix*rz*ry*rx;

gl_Position = projectionMatrix*ModelViewMatrix*vPosition;

vec4 eyePos = ModelViewMatrix*vPosition;

vec4 N = ModelViewMatrix*vNormal;

R = reflect(eyePos.xyz, N.xyz); }
Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Fragment Shader

21

precision mediump float;

varying vec3 R;

uniform samplerCube texMap;

void main()

{

vec4 texColor = textureCube(texMap, R);

gl_FragColor = texColor;

}

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

22

Sphere Mapping

•Original environmental mapping technique

proposed by Blinn and Newell based in

using lines of longitude and latitude to

map parametric variables to texture

coordinates

•OpenGL supports sphere mapping which

requires a circular texture map equivalent

to an image taken with a fisheye lens

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

23

Sphere Map

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

24

Introduction to Computer

Graphics with WebGL

Ed Angel

Professor Emeritus of Computer Science

Founding Director, Arts, Research,

Technology and Science Laboratory

University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Bump Maps

Ed Angel

Professor Emeritus of Computer Science

University of New Mexico

25Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

26

Objectives

• Introduce bump mapping

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

27

Modeling an Orange

•Consider modeling an orange

•Texture map a photo of an orange onto a
surface

- Captures dimples

- Will not be correct if we move viewer or light

- We have shades of dimples rather than their
correct orientation

• Ideally we need to perturb normal across
surface of object and compute a new
color at each interior point

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

28

Bump Mapping (Blinn)

•Consider a smooth surface
n

p

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

29

Rougher Version

n’

p

p’

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

30

Tangent Plane

pu

pv

n

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

31

Equations

pu=[∂x/ ∂u, ∂y/ ∂u, ∂z/ ∂u]T

p(u,v) = [x(u,v), y(u,v), z(u,v)]T

pv=[∂x/ ∂v, ∂y/ ∂v, ∂z/ ∂v]T

n = (pu pv) / | pu pv |

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

32

Displacement Function

p’ = p + d(u,v) n

d(u,v) is the bump or displacement function

|d(u,v)| << 1

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

33

Perturbed Normal

n’ = p’u p’v

p’u = pu + (∂d/∂u)n + d(u,v)nu

p’v = pv + (∂d/∂v)n + d(u,v)nv

If d is small, we can neglect last term

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

34

Approximating the Normal

n’ = p’u p’v

≈ n + (∂d/∂u)n pv + (∂d/∂v)n pu

The vectors n pv and n pu lie

in the tangent plane

Hence the normal is displaced in the tangent plane

Must precompute the arrays ∂d/ ∂u and ∂d/ ∂v

Finally,we perturb the normal during shading

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

35

Image Processing

•Suppose that we start with a function

d(u,v)

•We can sample it to form an array D=[dij]

•Then ∂d/ ∂u ≈ dij – di-1,j

and ∂d/ ∂v ≈ dij – di,j-1

•Embossing: multipass approach using

floating point buffer

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Example

36

Single Polygon and a Rotating Light Source

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

37

How to do this?

•The problem is that we want to apply the

perturbation at all points on the surface

•Cannot solve by vertex lighting (unless

polygons are very small)

•Really want to apply to every fragment

•Can’t do that in fixed function pipeline

•But can do with a fragment program!!

•See bumpmap.html and bumpmap.js

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

