
1

Introduction to Computer

Graphics with WebGL

Ed Angel

Professor Emeritus of Computer Science

Founding Director, Arts, Research,

Technology and Science Laboratory

University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Compositing and Blending

Ed Angel

Professor Emeritus of Computer Science

University of New Mexico

2Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

3

Objectives

•Learn to use the A component in RGBA

color for

- Blending for translucent surfaces

- Compositing images

- Antialiasing

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

4

Opacity and Transparency

• Opaque surfaces permit no light to pass through

• Transparent surfaces permit all light to pass

• Translucent surfaces pass some light

translucency = 1 – opacity (a)

opaque surface a =1

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

5

Physical Models

• Dealing with translucency in a physically correct

manner is difficult due to

- the complexity of the internal interactions of

light and matter

- Using a pipeline renderer

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

6

Writing Model

• Use A component of RGBA (or RGBa) color to

store opacity

• During rendering we can expand our writing

model to use RGBA values

Color Buffer

destination

component

blend

destination blending

factor

source blending factor
source

component

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

7

Blending Equation

• We can define source and destination blending

factors for each RGBA component

s = [sr, sg, sb, sa]

d = [dr, dg, db, da]

Suppose that the source and destination colors are

b = [br, bg, bb, ba]

c = [cr, cg, cb, ca]

Blend as

c’ = [br sr+ cr dr, bg sg+ cg dg , bb sb+ cb db , ba sa+ ca da]

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

8

OpenGL Blending and

Compositing

• Must enable blending and pick source and

destination factors

gl.enable(gl.BLEND)

gl.blendFunc(source_factor,

destination_factor)

• Only certain factors supported
-gl.ZERO, gl.ONE

-gl.SRC_ALPHA, gl.ONE_MINUS_SRC_ALPHA

-gl.DST_ALPHA, gl.ONE_MINUS_DST_ALPHA

- See Redbook for complete list

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

9

Example

• Suppose that we start with the opaque background

color (R0,G0,B0,1)

- This color becomes the initial destination color

• We now want to blend in a translucent polygon with

color (R1,G1,B1,a1)

• Select GL_SRC_ALPHA and GL_ONE_MINUS_SRC_ALPHA

as the source and destination blending factors

R’
1 = a1 R1 +(1- a1) R0, ……

• Note this formula is correct if polygon is either

opaque or transparent

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

10

Clamping and Accuracy

•All the components (RGBA) are clamped

and stay in the range (0,1)

•However, in a typical system, RGBA

values are only stored to 8 bits

- Can easily loose accuracy if we add many

components together

- Example: add together n images
• Divide all color components by n to avoid clamping

• Blend with source factor = 1, destination factor = 1

• But division by n loses bits

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

11

Order Dependency

• Is this image correct?

- Probably not

- Polygons are rendered

in the order they pass

down the pipeline

- Blending functions

are order dependent

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

12

Opaque and Translucent

Polygons

• Suppose that we have a group of polygons

some of which are opaque and some translucent

• How do we use hidden-surface removal?

• Opaque polygons block all polygons behind

them and affect the depth buffer

• Translucent polygons should not affect depth

buffer
- Render with gl.depthMask(false) which makes

depth buffer read-only

• Sort polygons first to remove order dependency

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

13

Fog

• We can composite with a fixed color and have

the blending factors depend on depth

- Simulates a fog effect

• Blend source color Cs and fog color Cf by

Cs’=f Cs + (1-f) Cf

• f is the fog factor

- Exponential

- Gaussian

- Linear (depth cueing)

• Deprecated but can recreate
Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

14

Fog Functions

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Compositing and HTML

• In desktop OpenGL, the A component has

no effect unless blending is enabled

• In WebGL, an A other than 1.0 has an

effect because WebGL works with the

HTML5 Canvas element

•A = 0.5 will cut the RGB values by ½

when the pixel is displayed

•Allows other applications to be blended

into the canvas along with the graphics

15Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

16

Line Aliasing

• Ideal raster line is one pixel wide

•All line segments, other than vertical and

horizontal segments, partially cover pixels

•Simple algorithms color

only whole pixels

•Lead to the “jaggies”

or aliasing

•Similar issue for polygons

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

17

Antialiasing

• Can try to color a pixel by adding a fraction of its

color to the frame buffer

- Fraction depends on percentage of pixel

covered by fragment

- Fraction depends on whether there is overlap

no overlap overlap

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

18

Area Averaging

• Use average area a1+a2-a1a2 as blending factor

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

19

OpenGL Antialiasing

•Not (yet) supported in WebGL

•Can enable separately for points, lines, or

polygons

•Note most hardware will automatically

antialias

glEnable(GL_POINT_SMOOTH);

glEnable(GL_LINE_SMOOTH);

glEnable(GL_POLYGON_SMOOTH);

glEnable(GL_BLEND);

glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

20

Introduction to Computer

Graphics with WebGL

Ed Angel

Professor Emeritus of Computer Science

Founding Director, Arts, Research,

Technology and Science Laboratory

University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Imaging Applications

Ed Angel

Professor Emeritus of Computer Science

University of New Mexico

21Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

22

Objectives

•Use the fragment shader to do image

processing

- Image filtering

- Pseudo Color

•Use multiple textures

- matrix operations

• Introduce GPGPU

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

23

Accumulation Techniques

• Compositing and blending are limited by resolution

of the frame buffer

- Typically 8 bits per color component

• The accumulation buffer was a high resolution buffer

(16 or more bits per component) that avoided this

problem

• Could write into it or read from it with a scale factor

• Slower than direct compositing into the frame buffer

• Now deprecated but can do techniques with floating

point frame buffers

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

24

Multirendering

•Composite multiple images

• Image Filtering (convolution)

- add shifted and scaled versions of an image

•Whole scene antialiasing

- move primitives a little for each render

•Depth of Field

- move viewer a little for each render keeping

one plane unchanged

•Motion effects

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Fragment Shaders and

Images

•Suppose that we send a rectangle (two

triangles) to the vertex shader and render

it with an n x m texture map

•Suppose that in addition we use an n x m

canvas

•There is now a one-to-one

correspondence between each texel and

each fragment

•Hence we can regard fragment operations

as imaging operations on the texture map
25Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

GPGPU

•Looking back at these examples, we can

note that the only purpose of the

geometry is to trigger the execution of the

imaging operations in the fragment shader

•Consequently, we can look at what we

have done as large matrix operations

rather than graphics operations

•Leads to the field of General Purpose

Computing with a GPU (GPGPU)

26Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Examples

•Add two matrices

•Multiply two matrices

•Fast Fourier Transform

•Uses speed and parallelism of GPU

•But how do we get out results?

- Floating point frame buffers

- OpenCL (WebCL)

- Compute shaders

27Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Using Multiple Texels

•Suppose we have a 1024 x 1024 texture

in the texture object “image”

sampler2D(image, vec2(x,y)) returns the

the value of the texture at (x,y)

sampler2D(image, vec2(x+1.0/1024.0), y);

returns the value of the texel to the right of

(x,y)

We can use any combination of texels

surrounding (x, y) in the fragment shader

28Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Image Enhancer

29

precision mediump float;

varying vec2 fTexCoord;

uniform sampler2D texture;

void main()

{

float d = 1.0/256.0; //spacing between texels

float x = fTexCoord.x;

float y = fTexCoord.y;

gl_FragColor = 10.0*abs(texture2D(texture, vec2(x+d, y))

- texture2D(texture, vec2(x-d, y)))

+10.0*abs(texture2D(texture, vec2(x, y+d))

- texture2D(texture, vec2(x, y-d)));

gl_FragColor.w = 1.0;

}
Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Honolulu Image

30

original enhanced
Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Sobel Edge Detector

•Nonlinear

•Find approximate gradient at each point

•Compute smoothed finite difference

approximations to x and y components

separately

•Display magnitude of approximate gradient

•Simple with fragment shader

31Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Sobel Edge Detector

32

vec4 gx = 3.0*texture2D(texture, vec2(x+d, y))

+ texture2D(texture, vec2(x+d, y+d))

+ texture2D(texture, vec2(x+d, y-d))

- 3.0*texture2D(texture, vec2(x-d, y))

- texture2D(texture, vec2(x-d, y+d))

- texture2D(texture, vec2(x-d, y-d));

vec4 gy = 3.0*texture2D(texture, vec2(x, y+d))

+ texture2D(texture, vec2(x+d, y+d))

+ texture2D(texture, vec2(x-d, y+d))

- 3.0*texture2D(texture, vec2(x, y-d))

- texture2D(texture, vec2(x+d, y-d))

- texture2D(texture, vec2(x-d, y-d));

gl_FragColor = vec4(sqrt(gx*gx + gy*gy), 1.0);

gl_FragColor.w = 1.0;
Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Sobel Edge Detector

33Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Using Multiple Textures

•Example: matrix addition

•Create two samplers, texture1 and

texture2, that contain the data

• In fragment shader

gl_FragColor =

sampler2D(texture1, vec2(x, y))

+sampler2D(texture2, vec2(x,y));

34Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Using 4 Way Parallelism

•Recent GPUs and graphics cards support

textures up to 8K x 8K

•For scalar imaging, we can do twice as

well using all four color components

35

R G

B A

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Indexed and Pseudo Color

•Display luminance (2D) image as texture map

•Treat pixel value as independent variable for

separate functions for each color component

36

void main(){

vec4 color = texture2D(texture, fTexCoord);

if(color.g<0.5) color.g = 2.0*color.g;

else color.g = 2.0 - 2.0*color.g;

color.b = 1.0-color.b;

gl_FragColor = color;

}

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Top View of 2D Sinc

37Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

The Next Step

•Need more storage for most GPGPU

calculations

•Example: filtering

•Example: iteration

•Need shared memory

•Solution: Use texture memory and off-

screen rendering

38Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

39

Introduction to Computer

Graphics with WebGL

Ed Angel

Professor Emeritus of Computer Science

Founding Director, Arts, Research,

Technology and Science Laboratory

University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Computing the Mandelbrot Set

Ed Angel

Professor Emeritus of Computer Science

University of New Mexico

40Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

41

Objectives

• Introduce the most famous fractal object

- more about fractal curves and surfaces later

• Imaging calculation

- Must compute value for each pixel on display

- Shows power of fragment processing

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

42

Sierpinski Gasket

Rule based:

Repeat n times. As n →∞

Area→0

Perimeter →∞

Not a normal geometric object

More about fractal curves and surfaces later
Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Complex Arithmetic

•Complex number defined by two scalars

z = x + jy

j2 = -1

•Addition and Subtraction

z1+z2 = x1 + x2 +j(y1+y2)

z1*z2 = x1*x2-y1*y2 + j(x1*y2+x2*y1)

•Magnitude

|z|2 = x2 + y2

43Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

44

Iteration in the Complex Plane

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

45

Mandelbrot Set

iterate on zk+1=zk
2+c

with z0 = 0 + j0

Two cases as k →∞

|zk |→∞

|zk | remains finite

If for a given c, |zk | remains finite, then c
belongs to the Mandelbrot set

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Computing the Mandelbrot Set

•Pick a rectangular region

•Map each pixel to a value in this region

•Do an iterative calculation for each pixel

- If magnitude is greater than 2, we know

sequence will diverge and point does not

belong to the set

- Stop after a fixed number of iterations

- Points with small magnitudes should be in set

- Color each point based on its magnitude

46Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

47

Mandelbrot Set

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Exploring the Mandelbrot Set

•Most interesting parts are centered near (-

0.5, 0.0)

•Really interesting parts are where we are

uncertain if points are in or out of the set

•Repeated magnification these regions

reveals complex and beautiful patterns

•We use color maps to enhance the detail

48Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

49

Mandelbrot Set

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Computing in the JS File I

•Form a texture map of the set and map to

a rectangle

50

var height = 0.5;

// size of window in complex plane

var width = 0.5;var cx = -0.5;

// center of window in complex plane

var cy = 0.5;var max = 100;

// number of interations per point

var n = 512;

var m =512;

var texImage = new Uint8Array(4*n*m);

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Computing in JS File II

51

for (var i = 0; i < n; i++)

for (var j = 0; j < m; j++) {

var x = i * (width / (n - 1)) + cx - width / 2;

var y = j * (height / (m - 1)) + cy - height / 2;

var c = [0.0, 0.0];

var p = [x, y];

for (var k = 0; k < max; k++) {

// compute c = c^2 + p

c = [c[0]*c[0]-c[1]*c[1], 2*c[0]*c[1]];

c = [c[0]+p[0], c[1]+p[1]];

v = c[0]*c[0]+c[1]*c[1];

if (v > 4.0) break; /* assume not in set if mag > 2 */

}Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Computing in JS File III

•Set up two triangles to define a rectangle

•Set up texture object with the set as data

•Render the triangles

52

// assign gray level to point based on its magnitude */

if (v > 1.0) v = 1.0; /* clamp if > 1 */

texImage[4*i*m+4*j] = 255*v;

texImage[4*i*m+4*j+1] =

255*(0.5* (Math.sin(v*Math.PI/180) + 1.0));

texImage[4*i*m+4*j+2] = 255*(1.0 - v);

texImage[4*i*m+4*j+3] = 255;

}

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Example

53Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Fragment Shader

•Our first implementation is incredibly

inefficient and makes no use of the power of

the fragment shader

•Note the calculation is “embarrassingly

parallel”

- computation for the color of each fragment is

completely independent

- Why not have each fragment compute membership

for itself?

- Each fragment would then determine its own color

54Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Interactive Program

•JS file sends window parameters obtained

from sliders to the fragment shader as

uniforms

•Only geometry is a rectangle

•No need for a texture map since shader

will work on individual pixels

55Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Fragment Shader I

56

precision mediump float;

uniform float cx;

uniform float cy;

uniform float scale;

float height;

float width;

void main() {

const int max = 100; /* number of iterations per point */

const float PI = 3.14159;

float n = 1000.0;

float m = 1000.0;
Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Fragment Shader II

57

float v;

float x = gl_FragCoord.x /(n*scale) + cx - 1.0 / (2.0*scale);

float y = gl_FragCoord.y/(m*scale) + cy - 1.0 / (2.0*scale);

float ax=0.0, ay=0.0;

float bx, by;

for (int k = 0; k < max; k++) {

// compute c = c^2 + p

bx = ax*ax-ay*ay;

by = 2.0*ax*ay;

ax = bx+x;

ay = by+y;

v = ax*ax+ay*ay;

if (v > 4.0) break; // assume not in set if mag > 2

} Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Fragment Shader

58

// assign gray level to point based on its magnitude //

// clamp if > 1

v = min(v, 1.0);

gl_FragColor.r = v;

gl_FragColor.g = 0.5* sin(3.0*PI*v) + 1.0;

gl_FragColor.b = 1.0-v;

gl_FragColor.b = 0.5* cos(19.0*PI*v) + 1.0;

gl_FragColor.a = 1.0;

}

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Analysis

•This implementation will use as many

fragment processors as are available

concurrently

•Note that if an iteration ends early, the GPU

will use that processor to work on another

fragment

•Note also the absence of loops over x and y

•Still not using the full parallelism since we

are really computing a luminance image

59Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

