
1

Introduction to Computer

Graphics with WebGL

Ed Angel

Professor Emeritus of Computer Science

Founding Director, Arts, Research,

Technology and Science Laboratory

University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Hierarchical Modeling I

Ed Angel

Professor Emeritus of Computer Science,

University of New Mexico

2Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

3

Objectives

•Examine the limitations of linear modeling

- Symbols and instances

• Introduce hierarchical models

- Articulated models

- Robots

• Introduce Tree and DAG models

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

4

Instance Transformation

•Start with a prototype object (a symbol)

•Each appearance of the object in the

model is an instance

- Must scale, orient, position

- Defines instance transformation

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

5

Symbol-Instance Table

Can store a model by assigning a number to

each symbol and storing the parameters

for the instance transformation

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

6

Relationships in Car Model

•Symbol-instance table does not show
relationships between parts of model

•Consider model of car
- Chassis + 4 identical wheels

- Two symbols

•Rate of forward motion determined by
rotational speed of wheels

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

7

Structure Through

Function Calls

car(speed)

{

chassis()

wheel(right_front);

wheel(left_front);

wheel(right_rear);

wheel(left_rear);

}

• Fails to show relationships well

• Look at problem using a graph

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

8

Graphs

•Set of nodes and edges (links)

•Edge connects a pair of nodes

- Directed or undirected

•Cycle: directed path that is a loop

loop

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

9

Tree

•Graph in which each node (except the

root) has exactly one parent node

- May have multiple children

- Leaf or terminal node: no children

root node

leaf node

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

10

Tree Model of Car

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

11

DAG Model

• If we use the fact that all the wheels are

identical, we get a directed acyclic graph

- Not much different than dealing with a tree

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

12

Modeling with Trees

•Must decide what information to place in

nodes and what to put in edges

•Nodes

- What to draw

- Pointers to children

•Edges

- May have information on incremental changes

to transformation matrices (can also store in

nodes)

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

13

Robot Arm

robot arm
parts in their own

coodinate systems

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

14

Articulated Models

•Robot arm is an example of an articulated

model

- Parts connected at joints

- Can specify state of model by

giving all joint angles

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

15

Relationships in Robot Arm

•Base rotates independently
- Single angle determines position

•Lower arm attached to base
- Its position depends on rotation of base

- Must also translate relative to base and rotate
about connecting joint

•Upper arm attached to lower arm
- Its position depends on both base and lower arm

- Must translate relative to lower arm and rotate
about joint connecting to lower arm

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

16

Required Matrices

• Rotation of base: Rb

- Apply M = Rb to base

• Translate lower arm relative to base: Tlu

• Rotate lower arm around joint: Rlu

- Apply M = Rb Tlu Rlu to lower arm

• Translate upper arm relative to upper arm: Tuu

• Rotate upper arm around joint: Ruu

- Apply M = Rb Tlu Rlu Tuu Ruu to upper arm

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

17

WebGL Code for Robot

var render = function() {

gl.clear(gl.COLOR_BUFFER_BIT | gl.DEPTH_BUFFER_BIT);

modelViewMatrix = rotate(theta[Base], 0, 1, 0);

base();

modelViewMatrix = mult(modelViewMatrix,

translate(0.0, BASE_HEIGHT, 0.0));

modelViewMatrix = mult(modelViewMatrix,

rotate(theta[LowerArm], 0, 0, 1));

lowerArm();

modelViewMatrix = mult(modelViewMatrix,

translate(0.0, LOWER_ARM_HEIGHT, 0.0));

modelViewMatrix = mult(modelViewMatrix,

rotate(theta[UpperArm], 0, 0, 1));

upperArm();

requestAnimFrame(render);
} Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

18

Tree Model of Robot

•Note code shows relationships between

parts of model

- Can change “look” of parts easily without

altering relationships

•Simple example of tree model

•Want a general node structure

for nodes

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

19

Possible Node Structure

Code for drawing part or

pointer to drawing function

linked list of pointers to children

matrix relating node to parent

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

20

Generalizations

•Need to deal with multiple children

- How do we represent a more general tree?

- How do we traverse such a data structure?

•Animation

- How to use dynamically?

- Can we create and delete nodes during

execution?

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

21

Introduction to Computer

Graphics with WebGL

Ed Angel

Professor Emeritus of Computer Science

Founding Director, Arts, Research,

Technology and Science Laboratory

University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Hierarchical Modeling II

Ed Angel

Professor Emeritus of Computer Science

University of New Mexico

22Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

23

Objectives

•Build a tree-structured model of a

humanoid figure

•Examine various traversal strategies

•Build a generalized tree-model structure

that is independent of the particular model

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

24

Humanoid Figure

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

25

Building the Model

•Can build a simple implementation using

quadrics: ellipsoids and cylinders

•Access parts through functions
-torso()

-leftUpperArm()

•Matrices describe position of node with

respect to its parent

- Mlla positions left lower leg with respect to left

upper arm

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

26

Tree with Matrices

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

27

Display and Traversal

•The position of the figure is determined by

11 joint angles (two for the head and one

for each other part)

•Display of the tree requires a graph

traversal

- Visit each node once

- Display function at each node that describes

the part associated with the node, applying the

correct transformation matrix for position and

orientation

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

28

Transformation Matrices

•There are 10 relevant matrices

- M positions and orients entire figure through

the torso which is the root node

- Mh positions head with respect to torso

- Mlua, Mrua, Mlul, Mrul position arms and legs with

respect to torso

- Mlla, Mrla, Mlll, Mrll position lower parts of limbs

with respect to corresponding upper limbs

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

29

Stack-based Traversal

•Set model-view matrix to M and draw torso

•Set model-view matrix to MMh and draw

head

•For left-upper arm need MMlua and so on

•Rather than recomputing MMlua from

scratch or using an inverse matrix, we can

use the matrix stack to store M and other

matrices as we traverse the tree

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

30

Traversal Code

figure() {

PushMatrix()

torso();

Rotate (…);

head();

PopMatrix();

PushMatrix();

Translate(…);

Rotate(…);

left_upper_arm();

PopMatrix();

PushMatrix();

save present model-view matrix

update model-view matrix for head

recover original model-view matrix

save it again

update model-view matrix

for left upper arm

recover and save original

model-view matrix again

rest of code
Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

31

Analysis

•The code describes a particular tree and a

particular traversal strategy

- Can we develop a more general approach?

•Note that the sample code does not

include state changes, such as changes

to colors

- May also want to push and pop other attributes

to protect against unexpected state changes

affecting later parts of the code

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

32

General Tree Data Structure

•Need a data structure to represent tree

and an algorithm to traverse the tree

•We will use a left-child right sibling

structure

- Uses linked lists

- Each node in data structure is two pointers

- Left: next node

- Right: linked list of children

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

33

Left-Child Right-Sibling Tree

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

34

Tree node Structure

•At each node we need to store

- Pointer to sibling

- Pointer to child

- Pointer to a function that draws the object

represented by the node

- Homogeneous coordinate matrix to multiply on

the right of the current model-view matrix

• Represents changes going from parent to node

• In WebGL this matrix is a 1D array storing matrix

by columns

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

35

Creating a treenode

function createNode(transform,

render, sibling, child) {

var node = {

transform: transform,

render: render,

sibling: sibling,

child: child,

}

return node;

};Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

36

Initializing Nodes

function initNodes(Id) {

var m = mat4();

switch(Id) {

case torsoId:

m = rotate(theta[torsoId], 0, 1, 0);

figure[torsoId] = createNode(m, torso, null, headId);

break;

case head1Id:

case head2Id:

m = translate(0.0, torsoHeight+0.5*headHeight, 0.0);

m = mult(m, rotate(theta[head1Id], 1, 0, 0));

m = mult(m, rotate(theta[head2Id], 0, 1, 0));

m = mult(m, translate(0.0, -0.5*headHeight, 0.0));

figure[headId] = createNode(m, head, leftUpperArmId, null);

break;
Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

37

Notes

• The position of figure is determined by 11 joint

angles stored in theta[11]

• Animate by changing the angles and

redisplaying

• We form the required matrices using rotate

and translate

•Because the matrix is formed using the

model-view matrix, we may want to first

push original model-view matrix on matrix

stack
Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

38

Preorder Traversal

function traverse(Id) {

if(Id == null) return;

stack.push(modelViewMatrix);

modelViewMatrix = mult(modelViewMatrix, figure[Id].transform);

figure[Id].render();

if(figure[Id].child != null) traverse(figure[Id].child);
modelViewMatrix = stack.pop();

if(figure[Id].sibling != null) traverse(figure[Id].sibling);

}

var render = function() {

gl.clear(gl.COLOR_BUFFER_BIT);

traverse(torsoId);

requestAnimFrame(render);

}

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

39

Notes

•We must save model-view matrix before
multiplying it by node matrix

- Updated matrix applies to children of node but
not to siblings which contain their own matrices

•The traversal program applies to any left-
child right-sibling tree

- The particular tree is encoded in the definition
of the individual nodes

•The order of traversal matters because of
possible state changes in the functions

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

40

Dynamic Trees

• Because we are using JS, the nodes and the

node structure can be changed during execution

• Definition of nodes and traversal are

essentially the same as before but we can add

and delete nodes during execution

• In desktop OpenGL, if we use pointers, the

structure can be dynamic

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

