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Objectives

•Examine the limitations of linear modeling

- Symbols and instances

• Introduce hierarchical models

- Articulated models

- Robots

• Introduce Tree and DAG models
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Instance Transformation

•Start with a prototype object (a symbol)

•Each appearance of the object in the 

model is an instance

- Must scale, orient, position

- Defines instance transformation
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Symbol-Instance Table

Can store a model by assigning a number to 

each symbol and storing the parameters 

for the instance transformation
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Relationships in Car Model

•Symbol-instance table does not show 
relationships between parts of model

•Consider model of car
- Chassis + 4  identical wheels

- Two symbols

•Rate of forward motion determined by 
rotational speed of wheels
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Structure Through 

Function Calls

car(speed)

{

chassis()

wheel(right_front);

wheel(left_front);

wheel(right_rear);

wheel(left_rear);

}

• Fails to show relationships well

• Look at problem using a graph
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Graphs

•Set of nodes and edges (links)

•Edge connects a pair of nodes

- Directed or undirected

•Cycle: directed path that is a loop

loop
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Tree

•Graph in which each node (except the 

root) has exactly one parent node

- May have multiple children

- Leaf or terminal node: no children

root node

leaf node
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Tree Model of Car
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DAG Model

• If we use the fact that all the wheels are 

identical, we get a directed acyclic graph

- Not much different than dealing with a tree
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Modeling with Trees

•Must decide what information to place in 

nodes and what to put in edges

•Nodes

- What to draw

- Pointers to children

•Edges

- May have information on incremental changes 

to transformation matrices (can also store in 

nodes)
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Robot Arm

robot arm
parts in their own 

coodinate systems
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Articulated Models

•Robot arm is an example of an articulated 

model

- Parts connected at joints

- Can specify state of model by 

giving all joint angles
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Relationships in Robot Arm

•Base rotates independently
- Single angle determines position

•Lower arm attached to base
- Its position depends on rotation of base

- Must also translate relative to base and rotate 
about connecting joint

•Upper arm attached to lower arm
- Its position depends on both base and lower arm

- Must translate relative to lower arm and rotate 
about joint connecting to lower arm
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Required Matrices

• Rotation of base: Rb

- Apply M = Rb to base

• Translate lower arm relative to base: Tlu

• Rotate lower arm around joint: Rlu

- Apply M = Rb Tlu Rlu to lower arm

• Translate upper arm relative to upper arm: Tuu

• Rotate upper arm around joint: Ruu

- Apply M = Rb Tlu Rlu Tuu Ruu to upper arm
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WebGL Code for Robot

var render = function() {

gl.clear( gl.COLOR_BUFFER_BIT | gl.DEPTH_BUFFER_BIT );

modelViewMatrix = rotate(theta[Base], 0, 1, 0 );

base();

modelViewMatrix = mult(modelViewMatrix, 

translate(0.0, BASE_HEIGHT, 0.0));

modelViewMatrix = mult(modelViewMatrix,

rotate(theta[LowerArm], 0, 0, 1 ));

lowerArm();

modelViewMatrix  = mult(modelViewMatrix, 

translate(0.0, LOWER_ARM_HEIGHT, 0.0));

modelViewMatrix  = mult(modelViewMatrix,

rotate(theta[UpperArm], 0, 0, 1) );

upperArm();

requestAnimFrame(render);
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Tree Model of Robot

•Note code shows relationships between 

parts of model

- Can change “look” of parts easily without 

altering relationships

•Simple example of tree model

•Want a general node structure

for nodes
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Possible Node Structure

Code for drawing part or

pointer to drawing function

linked list of pointers to children

matrix relating node to parent

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 



20

Generalizations

•Need to deal with multiple children

- How do we represent a more general tree?

- How do we traverse such a data structure?

•Animation

- How to use dynamically?

- Can we create and delete nodes during 

execution?
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Objectives

•Build a tree-structured model of a 

humanoid figure

•Examine various traversal strategies

•Build a generalized tree-model structure 

that is independent of the particular model
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Humanoid Figure
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Building the Model

•Can build a simple implementation using 

quadrics: ellipsoids and cylinders

•Access parts through functions
-torso()

-leftUpperArm()

•Matrices describe position of node with 

respect to its parent

- Mlla positions left lower leg with respect to left 

upper arm

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 



26

Tree with Matrices
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Display and Traversal

•The position of the figure is determined by 

11 joint angles (two for the head and one 

for each other part)

•Display of the tree requires a graph 

traversal

- Visit each node once

- Display function at each node that describes 

the part associated with the node, applying the 

correct transformation matrix for position and 

orientation
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Transformation Matrices

•There are 10 relevant matrices

- M positions and orients entire figure through 

the torso which is the root node

- Mh positions head with respect to torso

- Mlua, Mrua, Mlul, Mrul position arms and legs with 

respect to torso

- Mlla, Mrla, Mlll, Mrll position lower parts of limbs 

with respect to corresponding upper limbs
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Stack-based Traversal

•Set model-view matrix to M and draw torso

•Set model-view matrix to MMh and draw 

head

•For left-upper arm need MMlua and so on

•Rather than recomputing MMlua from 

scratch or using an inverse matrix, we can 

use the matrix stack to store M and other 

matrices as we traverse the tree
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Traversal Code

figure() {

PushMatrix()

torso();

Rotate (…);

head();

PopMatrix();

PushMatrix();

Translate(…);

Rotate(…);

left_upper_arm();

PopMatrix();

PushMatrix();

save present model-view matrix

update model-view matrix for head

recover original model-view matrix

save it again

update model-view matrix 

for left upper arm

recover and save original 

model-view matrix again

rest of code
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Analysis

•The code describes a particular tree and a 

particular traversal strategy

- Can we develop a more general approach?

•Note that the sample code does not 

include state changes, such as changes 

to colors

- May also want to push and pop other attributes 

to protect against unexpected state changes 

affecting later parts of the code
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General Tree Data Structure

•Need a data structure to represent tree 

and an algorithm to traverse the tree

•We will use a left-child right sibling

structure

- Uses linked lists

- Each node in data structure is two pointers

- Left: next node

- Right: linked list of children
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Left-Child Right-Sibling Tree
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Tree node Structure

•At each node we need to store 

- Pointer to sibling

- Pointer to child

- Pointer to a function that draws the object 

represented by the node

- Homogeneous coordinate matrix to multiply on 

the right of the current model-view matrix

• Represents changes going from parent to node

• In WebGL this matrix is a 1D array storing matrix 

by columns 
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Creating a treenode

function createNode(transform, 

render, sibling, child) {

var node = {

transform: transform,

render: render,

sibling: sibling,

child: child,

}

return node;
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Initializing Nodes

function initNodes(Id) {

var m = mat4();

switch(Id) {

case torsoId:

m = rotate(theta[torsoId], 0, 1, 0 );

figure[torsoId] = createNode( m, torso, null, headId );

break;

case head1Id:

case head2Id:

m = translate(0.0, torsoHeight+0.5*headHeight, 0.0);

m = mult(m, rotate(theta[head1Id], 1, 0, 0));

m = mult(m, rotate(theta[head2Id], 0, 1, 0));

m = mult(m, translate(0.0, -0.5*headHeight, 0.0));

figure[headId] = createNode( m, head, leftUpperArmId, null);

break;
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Notes

• The position of figure is determined by 11 joint 

angles stored in theta[11]

• Animate by changing the angles and 

redisplaying

• We form the required matrices using rotate

and translate

•Because the matrix is formed using the 

model-view matrix, we may want to first 

push original model-view matrix on matrix 

stack
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Preorder Traversal

function traverse(Id) {

if(Id == null) return;

stack.push(modelViewMatrix);

modelViewMatrix = mult(modelViewMatrix, figure[Id].transform);

figure[Id].render();

if(figure[Id].child != null) traverse(figure[Id].child);     
modelViewMatrix = stack.pop();

if(figure[Id].sibling != null) traverse(figure[Id].sibling);

}

var render = function() {

gl.clear( gl.COLOR_BUFFER_BIT );

traverse(torsoId);

requestAnimFrame(render);

}

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 



39

Notes

•We must save model-view matrix before 
multiplying it by node matrix 

- Updated matrix applies to children of node but 
not to siblings which contain their own matrices

•The traversal program applies to any left-
child right-sibling tree

- The particular tree is encoded in the definition 
of the individual nodes

•The order of traversal matters because of 
possible state changes in the functions
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Dynamic Trees

• Because we are using JS, the nodes and the 

node structure can be changed during execution

• Definition of nodes and traversal are 

essentially the same as before but we can add 

and delete nodes during execution

• In desktop OpenGL, if we use pointers, the 

structure can be dynamic
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