g+ [ntroduction to Computer
Graphics with WebGL

Ed Angel
Professor Emeritus of Computer Science

Founding Director, Arts, Research,
Technology and Science Laboratory

University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

{“l
The University ol New Mexico

Graphical Objects and Scene
Graphs 1

Ed Angel
Professor Emeritus of Computer Science
University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

he Universily ol New Mexico

- Objectives

* Introduce graphical objects

* Generalize the notion of objects to include
lights, cameras, attributes

* Introduce scene graphs

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

] Limitations of Immediate
Mode Graphics

*When we define a geometric object in an
application, upon execution of the code
the object is passed through the pipeline

* |t then disappeared from the graphical
system

* To redraw the object, either changed or
the same, we had to reexecute the code

* Display lists provided only a partial
solution to this problem

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

~#" Retained Mode Graphics

* Display lists were server side
« GPUs allowed data to be stored on GPU

« Essentially all iImmediate mode functions
have been deprecated

* Nevertheless, OpenGL is a low level API

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

- OpenGL and Objects

* OpenGL lacks an object orientation

* Consider, for example, a green sphere
- We can model the sphere with polygons

- Its color is determined by the OpenGL state and
IS not a property of the object

- Loose linkage with vertex attributes
* Defies our notion of a physical object

*We can try to build better objects in code
using object-oriented languages/technigues

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 6

. Imperative Programming
&
Model

* Example: rotate a cube

cube data

results

* The rotation function must know how the
cube Is represented
- Vertex list
- Edge list

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

~ Object-Oriented
o Programming Model

* In this model, the representation is stored with

the object

Application

* The application sends a message to the object
* The object contains functions (methods) which

message

allow It to transform itself

'Cube Object

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

~I. C/C++/JavallS

he Universily ol New Mexico

« Can try to use C structs to build objects

« C++/JavalJS provide better support
- Use class construct

- With C++ we can hide implementation using
public, private, and protected members |

- JS provides multiple methods for object

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

- Cube Object

he Universily ol New Mexico

* Suppose that we want to create a simple
cube object that we can scale, orient,
position and set its color directly through
code such as

var mycube = new Cube() ;

mycube.color[0]=1.0;

mycube.color[l]= mycube.color[2]=0.0;

mycube.matrix[0] [0]=......

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 10

he Universily ol New Mexico

~&" Cube Object Functions

* \We would also like to have functions that
act on the cube such as
-mycube. translate (1.0, 0.0,0.0);
-mycube.rotate(theta, 1.0, 0.0, 0.0);
-setcolor (mycube, 1.0, 0.0, 0.0);

*We also need a way of displaying the cube
-mycube . render () ;

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 1

~#&" Building the Cube Object

The Universily ol New Mexic

var cube {
var color[3];

var matrix[4] [4];

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

12

~E The Implementation

« Can use any implementation in the private
part such as a vertex list

* The private part has access to public
members and the implementation of class
methods can use any implementation
without making it visible

* Render method is tricky but it will invoke
the standard OpenGL drawing functions

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 13

he Universily ol New Mexico

- Other Objects

* Other objects have geometric aspects
- Cameras
- Light sources

* But we should be able to have
nongeometric objects too
- Materials

- Colors
- Transformations (matrices)

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

14

L JS Objects

cube mycube;

material plastic;

mycube.setMaterial (plastic)

N

camera frontView;

frontView.position(x ,y, Z)

N

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

15

- JS Objects

he Universily ol New Mexico

« Can create much like Java or C++ objects
- constructors
- prototypes
- methods
- private methods and variables

var myCube = new Cube();

myCube.color =[1.0, 0.0, 0.0]’
myCube.instance =

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 16

{m

he Universily ol New Mexico

var myLight

Light Object

= new Light();

// match Phong model

myLight.
myLight.
myLight.
myLight.
myLight.
myLight.

type = 0; //directional
position = ... ;
orientation = ... ;
specular = ... ;

diffuse = ... ;

ambient = ... ;

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

17

he Universily ol New Mexico

- Scene Descriptions

* |f we recall figure model, we saw that

- We could describe model either by tree or by
equivalent code

- We could write a generic traversal to display

* |f we can represent all the elements of a
scene (cameras, lights,materials,
geometry) as JS objects, we should be
able to show them In a tree

- Render scene by traversing this tree

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

18

~H Scene Graph

The University ol New Mexico

=St s

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

19

o K Traversal

myScene = new Scene() ;

myLight new Light();

myLight.Color = ... ;

myscene .Add (myLight) ;
objectl = new Object() ;
objectl.color = ..
myscene.add (objectl) ;

myscene.render () ;

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

g+ [ntroduction to Computer
Graphics with WebGL

Ed Angel
Professor Emeritus of Computer Science

Founding Director, Arts, Research,
Technology and Science Laboratory

University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 21

{“l
The University ol New Mexico

Graphical Objects and Scene
Graphs 2

Ed Angel
Professor Emeritus of Computer Science
University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

22

he Universily ol New Mexico

- Objectives
ook at some real scene graphs

three.js (threejs.org)
» Scene graph rendering

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

23

he Universily ol New Mexico

- Scene Graph History

* OpenGL development based largely on
people who wanted to exploit hardware
- real time graphics
- animation and simulation
- stand-alone applications

« CAD community needed to be able to
share databases
- real time not and photorealism not issues
- need cross-platform capability
- first attempt: PHIGS

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

24

~#" Scene Graph Organization

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

25

~ Inventor and Java3D

* Inventor and Java3D provide a scene graph API

« Scene graphs can also be described by a file
(text or binary)

- Implementation independent way of
transporting scenes

- Supported by scene graph APIs

* However, primitives supported should match
capabilities of graphics systems

- Hence most scene graph APIs are built on top
of OpenGL, WebGL or DirectX (for PCs)

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 26

~H VRML
The University ol New Mexico

* Want to have a scene graph that can be
used over the World Wide Web

*Need links to other sites to support
distributed data bases

*Virtual Reality Markup Language
- Based on Inventor data base
- Implemented with OpenGL

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

27

~H Open Scene Graph

* Supports very complex geometries by
adding occulusion culling In first pass

« Supports translucently through a second
pass that sorts the geometry

* First two passes yield a geometry list that
IS rendered by the pipeline in a third pass

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 28

he Universily ol New Mexico

- three.js

* Popular scene graph built on top of
WebGL

- also supports other renderers

* See threejs.org
- easy to download
- many examples

* Also Eric Haines’ Udacity course

* Major differences In approaches to
computer graphics

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

29

- three.js scene

he Universily ol New Mexico

var scene = new THREE.Scene();
var camera = new THREE.PerspectiveCamera(75,
window.innerWidth/ window.innerHeight, 0.1, 1000);

var renderer = new THREE.WebGLRenderer();
renderer.setSize(window.innerWidth, window.innerHeight);
document.body.appendChild(renderer.domElement);

var geometry = new THREE.CubeGeometry(1,1,1);

var material = new THREE.MeshBasicMaterial({color: 0x00ff00});
var cube = new THREE.Mesh(geometry, material);
scene.add(cube);

camera.position.z = 5;

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 30

- three.js render loop

var render = function () {
requestAnimationFrame(render);
cube.rotation.x += 0.1,
cube.rotation.y += 0.1,
renderer.render(scene, camera);
¢

render();

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

31

g+ [ntroduction to Computer
Graphics with WebGL

Ed Angel
Professor Emeritus of Computer Science

Founding Director, Arts, Research,
Technology and Science Laboratory

University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 32

Rendering Overview

Ed Angel
Professor Emeritus of Computer Science
University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

33

he Universily ol New Mexico

- Objectives

« Examine what happens between the
vertex shader and the fragment shader

* Introduce basic implementation strategies
* Clipping
* Rendering

- lines
- polygons

* Glve a sample algorithm for each

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 34

he Universily ol New Mexico

~ Overview

* At end of the geometric pipeline, vertices
have been assembled into primitives

* Must clip out primitives that are outside
the view frustum

- Algorithms based on representing primitives by
lists of vertices

* Must find which pixels can be affected by
each primitive
- Fragment generation
- Rasterization or scan conversion

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 35

- Required Tasks

he Universily ol New Mexico

* Clipping
* Rasterization or scan conversion
 Transformations

« Some tasks deferred until fragment
processing
- Hidden surface removal
- Antialiasing

Geometric Fragment Frame

Modeling —— ity —® Rasterization ——#» orocessing —

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 36

-#" Rasterization Meta Algorithms

* Any rendering method process every object
and must assign a color to every pixel

* Think of rendering algorithms as two loops
- over objects
- over pixels
* The order of these loops defines two
strategies
- Image oriented
- object oriented

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 37

- Object Space Approach

he Universily ol New Mexico

*For every object, determine which pixels it
covers and shade these pixels
- Pipeline approach
- Must keep track of depths for HSR
- Cannot handle most global lighting calculations
- Need entire framebuffer available at all times

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 38

= K Image Space Approach

*For every pixel, determine which object
that projects on the pixel is closest to the
viewer and compute the shade of this pixel

- Ray tracing paradigm
- Need all objects available
* Patch Renderers
- Divide framebuffer into small patches
- Determine which objects affect each patch
- Used in limited power devices such as cell phones

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 39

~#" Algorithm Experimentation

 Create a framebuffer object and use
render-to-texture to create a virtual
framebuffer into which you can write
iIndividual pixels

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

40

