
1

Introduction to Computer

Graphics with WebGL

Ed Angel

Professor Emeritus of Computer Science

Founding Director, Arts, Research,

Technology and Science Laboratory

University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Graphical Objects and Scene

Graphs 1

Ed Angel

Professor Emeritus of Computer Science

University of New Mexico

2Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

3

Objectives

• Introduce graphical objects

•Generalize the notion of objects to include

lights, cameras, attributes

• Introduce scene graphs

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

4

Limitations of Immediate

Mode Graphics

•When we define a geometric object in an

application, upon execution of the code

the object is passed through the pipeline

• It then disappeared from the graphical

system

•To redraw the object, either changed or

the same, we had to reexecute the code

•Display lists provided only a partial

solution to this problem

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Retained Mode Graphics

•Display lists were server side

•GPUs allowed data to be stored on GPU

•Essentially all immediate mode functions

have been deprecated

•Nevertheless, OpenGL is a low level API

5Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

6

OpenGL and Objects

•OpenGL lacks an object orientation

•Consider, for example, a green sphere

- We can model the sphere with polygons

- Its color is determined by the OpenGL state and

is not a property of the object

- Loose linkage with vertex attributes

•Defies our notion of a physical object

•We can try to build better objects in code

using object-oriented languages/techniques

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

7

Imperative Programming

Model

•Example: rotate a cube

•The rotation function must know how the
cube is represented

- Vertex list

- Edge list

Application Rotate

cube data

results

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

8

Object-Oriented

Programming Model

Application Cube Object

• In this model, the representation is stored with

the object

• The application sends a message to the object

• The object contains functions (methods) which

allow it to transform itself

message

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

9

C/C++/Java/JS

•Can try to use C structs to build objects

•C++/Java/JS provide better support

- Use class construct

- With C++ we can hide implementation using

public, private, and protected members i

- JS provides multiple methods for object

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

10

Cube Object

•Suppose that we want to create a simple

cube object that we can scale, orient,

position and set its color directly through

code such as

var mycube = new Cube();

mycube.color[0]=1.0;

mycube.color[1]= mycube.color[2]=0.0;

mycube.matrix[0][0]=………

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

11

Cube Object Functions

•We would also like to have functions that

act on the cube such as
-mycube.translate(1.0, 0.0,0.0);

-mycube.rotate(theta, 1.0, 0.0, 0.0);

-setcolor(mycube, 1.0, 0.0, 0.0);

•We also need a way of displaying the cube
-mycube.render();

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

12

Building the Cube Object

var cube {

var color[3];

var matrix[4][4];

}

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

13

The Implementation

•Can use any implementation in the private

part such as a vertex list

•The private part has access to public

members and the implementation of class

methods can use any implementation

without making it visible

•Render method is tricky but it will invoke
the standard OpenGL drawing functions

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

14

Other Objects

•Other objects have geometric aspects

- Cameras

- Light sources

•But we should be able to have

nongeometric objects too

- Materials

- Colors

- Transformations (matrices)

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

15

JS Objects

cube mycube;

material plastic;

mycube.setMaterial(plastic);

camera frontView;

frontView.position(x ,y, z);

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

JS Objects

•Can create much like Java or C++ objects

- constructors

- prototypes

- methods

- private methods and variables

16

var myCube = new Cube();

myCube.color = [1.0, 0.0, 0.0]’

myCube.instance = …….

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

17

Light Object

var myLight = new Light();

// match Phong model

myLight.type = 0; //directional

myLight.position = ……;

myLight.orientation = ……;

myLight.specular = ……;

myLight.diffuse = ……;

myLight.ambient = ……;

}
Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

18

Scene Descriptions

• If we recall figure model, we saw that

- We could describe model either by tree or by

equivalent code

- We could write a generic traversal to display

• If we can represent all the elements of a

scene (cameras, lights,materials,

geometry) as JS objects, we should be

able to show them in a tree

- Render scene by traversing this tree

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

19

Scene Graph

Scene

CameraObject 1 Object 2Light

Color Material Material Position

Instance Instance RotatePosition

Clip

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

20

Traversal

myScene = new Scene();

myLight = new Light();

myLight.Color = ……;

…

myscene.Add(myLight);

object1 = new Object();

object1.color = …

myscene.add(object1);

…

…

myscene.render();

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

21

Introduction to Computer

Graphics with WebGL

Ed Angel

Professor Emeritus of Computer Science

Founding Director, Arts, Research,

Technology and Science Laboratory

University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Graphical Objects and Scene

Graphs 2

Ed Angel

Professor Emeritus of Computer Science

University of New Mexico

22Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Objectives

•Look at some real scene graphs

• three.js (threejs.org)

•Scene graph rendering

23Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Scene Graph History

•OpenGL development based largely on

people who wanted to exploit hardware

- real time graphics

- animation and simulation

- stand-alone applications

•CAD community needed to be able to

share databases

- real time not and photorealism not issues

- need cross-platform capability

- first attempt: PHIGS
24Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Scene Graph Organization

25

OpenGL

Database

WebGL Direct X

WWW

Scene Graph

Scene Graph API

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

26

Inventor and Java3D

• Inventor and Java3D provide a scene graph API

• Scene graphs can also be described by a file

(text or binary)

- Implementation independent way of

transporting scenes

- Supported by scene graph APIs

• However, primitives supported should match

capabilities of graphics systems

- Hence most scene graph APIs are built on top

of OpenGL, WebGL or DirectX (for PCs)

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

27

VRML

•Want to have a scene graph that can be

used over the World Wide Web

•Need links to other sites to support

distributed data bases

•Virtual Reality Markup Language

- Based on Inventor data base

- Implemented with OpenGL

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Open Scene Graph

•Supports very complex geometries by

adding occulusion culling in first pass

•Supports translucently through a second

pass that sorts the geometry

•First two passes yield a geometry list that

is rendered by the pipeline in a third pass

28Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

three.js

•Popular scene graph built on top of

WebGL

- also supports other renderers

•See threejs.org

- easy to download

- many examples

•Also Eric Haines’ Udacity course

•Major differences in approaches to

computer graphics

29Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

three.js scene

30

var scene = new THREE.Scene();

var camera = new THREE.PerspectiveCamera(75,

window.innerWidth/ window.innerHeight, 0.1, 1000);

var renderer = new THREE.WebGLRenderer();

renderer.setSize(window.innerWidth, window.innerHeight);

document.body.appendChild(renderer.domElement);

var geometry = new THREE.CubeGeometry(1,1,1);

var material = new THREE.MeshBasicMaterial({color: 0x00ff00});

var cube = new THREE.Mesh(geometry, material);

scene.add(cube);

camera.position.z = 5;

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

three.js render loop

31

var render = function () {

requestAnimationFrame(render);

cube.rotation.x += 0.1;

cube.rotation.y += 0.1;

renderer.render(scene, camera);

};

render();

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

32

Introduction to Computer

Graphics with WebGL

Ed Angel

Professor Emeritus of Computer Science

Founding Director, Arts, Research,

Technology and Science Laboratory

University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

33

Rendering Overview

Ed Angel

Professor Emeritus of Computer Science

University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

34

Objectives

•Examine what happens between the

vertex shader and the fragment shader

• Introduce basic implementation strategies

•Clipping

•Rendering

- lines

- polygons

•Give a sample algorithm for each

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

35

Overview

•At end of the geometric pipeline, vertices
have been assembled into primitives

•Must clip out primitives that are outside
the view frustum

- Algorithms based on representing primitives by
lists of vertices

•Must find which pixels can be affected by
each primitive

- Fragment generation

- Rasterization or scan conversion

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

36

Required Tasks

•Clipping

•Rasterization or scan conversion

•Transformations

•Some tasks deferred until fragment

processing

- Hidden surface removal

- Antialiasing

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

37

Rasterization Meta Algorithms

•Any rendering method process every object
and must assign a color to every pixel

•Think of rendering algorithms as two loops
- over objects

- over pixels

•The order of these loops defines two
strategies

- image oriented

- object oriented

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

38

Object Space Approach

•For every object, determine which pixels it
covers and shade these pixels

- Pipeline approach

- Must keep track of depths for HSR

- Cannot handle most global lighting calculations

- Need entire framebuffer available at all times

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

39

Image Space Approach

•For every pixel, determine which object
that projects on the pixel is closest to the
viewer and compute the shade of this pixel

- Ray tracing paradigm

- Need all objects available

•Patch Renderers
- Divide framebuffer into small patches

- Determine which objects affect each patch

- Used in limited power devices such as cell phones

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Algorithm Experimentation

•Create a framebuffer object and use

render-to-texture to create a virtual

framebuffer into which you can write

individual pixels

40Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

