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- Objectives

* Introduce types of curves and surfaces
- Explicit
- Implicit
- Parametric
- Strengths and weaknesses

* Discuss Modeling and Approximations
- Conditions
- Stability
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he Universily ol New Mexico

- Escaping Flatland

* Until now we have worked with flat entities
such as lines and flat polygons
- Fit well with graphics hardware
- Mathematically simple

 But the world Is not composed of flat entities
- Need curves and curved surfaces

- May only have need at the application level

- Implementation can render them approximately
with flat primitives
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- Modeling with Curves

The Umiversily ol New Mexico

Interpolating data point
data points
approximating curve

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015



What Makes a Good
] _
Representation?

* There are many ways to represent curves
and surfaces

* Want a representation that is
- Stable
- Smooth
- Easy to evaluate

- Must we interpolate or can we just come close
to data?

- Do we need derivatives?
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8" Explicit Representation

 Most familiar form of curve in 2D

y=t(x)
« Cannot represent all curves Y

- Vertical lines
- Circles

* Extension to 3D
- y=f(x), z=g(x)

- The form z = f(Xx,y) defines a surface

o

X

v
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~&" Implicit Representation
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« Two dimensional curve(s)
g(x,y)=0
* Much more robust
- All lines ax+by+c=0
- Circles x2+y?-r>=0
* Three dimensions g¢(x,y,z)=0 defines a surface
- Intersect two surface to get a curve

* In general, we cannot solve for points that
satisfy
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- Algebraic Surface

T )
222Xy 7 =0
]

*Quadric surface 2 > i+j+k

At most 10 terms

«Can solve intersection with a ray by
reducing problem to solving quadratic equation
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<~ Parametric Curves

I'he Universily ol New Mexico

« Separate equation for each spatial variable

X=X(U)
y=y(u) p(u)=[x(u), y(u), z(u)]"
z=2(u)

*FOr u,., > U= u., We trace out a curve in two or

three dimensions

A
/ P(Una)

p(umin)
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- Selecting Functions
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» Usually we can select “good” functions
- not unique for a given spatial curve
- Approximate or interpolate known data
- Want functions which are easy to evaluate

- Want functions which are easy to differentiate
Computation of normals
Connecting pieces (segments)

- Want functions which are smooth
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<~ Parametric Lines
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We can normalize u to be over the interval (0,1)

Line connecting two points p, and p, p(1)=p;

p(u)=(1-u)py*up,

P(0) = py
Ray from p, in the direction d p(1)=p,+d
=p,+ud d
p(u)=py+u
P(0) = py
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<~ Parametric Surfaces

e Surfaces require 2 parameters

X=x(u,v) Y1 p(u1)
y=y(u,v) p(0.v) p(1,v)
z=2(u,V)

p(u,v) = [x(u,v), y(u,v), z(u,v)]T 2 PWO)
 \Want same properties aS Curves.
- Smoothness

- Differentiability
- Ease of evaluation
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4.“\
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Normals

We can differentiate with respect to u and v to
obtain the normal at any point p

op(u,v)
ou

o op(u,v) y op(u,v)

- ox(u,v)/ou |

oy(u,v)/ou

' oz(u,v)/au |

ou

oV

op(u, V) _

ox(u,v)/ov
oy(u,v)/ov

- oz(u,v)/ov |
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<~ Parametric Planes

point-vector form

p(U,V)=py+ug+vr '
n=qxr
Po
three-point form
d=P1—DBo
F'=P2,—Po
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- Parametric Sphere
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X(u,v) =r cos 0 sin ¢
y(u,v) =rsin 0 sin ¢
Z(u,v) =rcos ¢

360 >

>0
>0

0
180 > ¢

0 constant: circles of constant longitude
¢ constant: circles of constant latitude

differentiate to show n=p
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- Curve Segments
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 After normalizing u, each curve is written
p(u)=[x(u), y(u), zw)]", 1>u=>0

* In classical numerical methods, we design a
single global curve

 In computer graphics and CAD, it is better to
design small connected curve segments

o(u) join point p(1) = gq(0)

5(0) q(u) q(l)

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 1



Parametric Polynomial
~
Curves

N M L
X(U)=> cau' yU)=> cyu’ z(u)=> cau*
i=0 j=0 k=0
If N=M=K, we need to determine 3(N+1) coefficients

Equivalently we need 3(N+1) independent conditions

*Noting that the curves for x, y and z are independent,

we can define each independently in an identical manner
L

*We will use the form  p(u) = > ¢ u*
where p can be any of X, y, z k=0
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- Why Polynomials

* Easy to evaluate

« Continuous and differentiable everywhere

- Must worry about continuity at join points
Including continuity of derivatives

p(u)

/\/q(u)\

join point p(1) = g(0)
but p°(1) = q°(0)
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Cubic Parametric
{m _
Polynomials

 N=M=L=3, gives balance between ease of
evaluation and flexibility in design

3
p(u) = ZCk Th
k=0

 Four coefficients to determine for each of x, y and z

« Seek four independent conditions for various
values of u resulting in 4 equations in 4 unknowns
for each of X, y and z

- Conditions are a mixture of continuity
requirements at the join points and conditions for
fitting the data
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<#" Cubic Polynomial Surfaces

p(u,v)=[x(u,v), y(u,v), z(uv)]'

where
3
0

p(u,v) = ZB:ZCijUiVj

i=0 j=

pisanyof x,yorz

Need 48 coefficients ( 3 independent sets of 16) to
determine a surface patch
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Designing Parametric Cubic
curves

Ed Angel
Professor Emeritus of Computer Science
University of New Mexico
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- Objectives

he Universily ol New Mexico

* Introduce the types of curves
- Interpolating
- Hermite
- Bezier
- B-spline
* Analyze their performance
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~a Matrix-Vector Form

The Umiversily ol New Mexico

3
p(u) = ZCk Th
k=0

Co

_ C1
define C= U=
Co

Cs

.
u
u2

_u3_

T T

then p(U)zu C=c U
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- Interpolating Curve
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Py s

Po P,

Given four data (control) points p, , P; P, ; P2
determine cubic p(u) which passes through them

Must find ¢, ,c,,C, , C,
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*l. Interpolation Equations

he Universily ol New Mexico

apply the interpolating conditions at u=0, 1/3, 2/3, 1
Po=p(0)=c,
P,=p(1/3)=c,+(1/3)c,+(1/3)*c,+(1/3)%c,
P,=p(2/3)=c,+(2/3)c,+(2/3)*c,+(2/3)%c,
P3=p(1)=CytCy+CytC,

or in matrix form with p = [py P; P, Pa]”

1 0 O2 O3
(5 G 6
p:AC A= 2 3
(2) 2 2
1 | = = -
3 3 3
1 1 1 1
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- Interpolation Matrix

The Umiversily ol New Mexico

Solving for ¢c we find the interpolation matrix

1 0 0 0
—9.5 9 -4.5 1

9 225 18 45
-45 135 -135 45 |

M =A" =

c=Mp

Note that M, does not depend on input data and
can be used for each segmentinx, y, and z
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Interpolating Multiple
~&
Segments

3 e o
pO ]/ p3 \ p5
P

use p — [po pl p2 p3]T use p = [p3 p4 p5 p6]T

Get continuity at join points but not
continuity of derivatives
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- Blending Functions

Rewriting the equation for p(u)
p(u)=u'c=u'Mp = b(u)'p

where b(u) = [b,(u) b,(u) b,(u) bs(u)]"is
an array of blending polynomials such that
p(u) = bo(u)pyt by (U)py+ b,y (U)py+ ba(u)p;
0o(U) = -4.5(u-1/3)(u-2/3)(u-1)

0,(u) = 13.5u (u-2/3)(u-1)

0,(u) =-13.5u (u-1/3)(u-1)

0,(u) = 4.5u (u-1/3)(u-2/3)
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- Blending Functions

The Umiversily ol New Mexico

* These functions are not smooth
- Hence the interpolation polynomial is not smooth

A b, (u) b,(u)
"Nbolu)

wl—
WIN
—_

\\\\
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B Interpolating Patch
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3 3 o
p(u,v) = Z ZCij u'y’
j=0

i—0

Need 16 conditions to determine the 16 coefficients Cij
3

Choose atu,v=0, 1/3, 2/3, 1
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<~ Matrix Form

Define v =[1vv? v’
C=[cy] P=Ipyl
p(u,v) =u'Cv

If we observe that for constant u (v), we obtain
Interpolating curve in v (u), we can show

C=M,PM,
p(u,v) =u™™,PM, v
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- Blending Patches
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3 3
p(u,v):z Zbi(u)bj(v)pij
i=0 j=0
Each b;(u)b;(v) is a blending patch

Shows that we can build and analyze surfaces
from our knowledge of curves
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. Other Types of Curves and
<
e Gaivrsity o e Monies Su rfaC es

 How can we get around the limitations of
the Interpolating form
- Lack of smoothness
- Discontinuous derivatives at join points

*We have four conditions (for cubics) that
we can apply to each segment
- Use them other than for interpolation
- Need only come close to the data
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<~ Hermite Form

p’(0) p’(1)

p(0) p(1)

Use two interpolating conditions and
two derivative conditions per segment

Ensures continuity and first derivative
continuity between segments
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~ Equations

The Umiversily ol New Mexico

Interpolating conditions are the same at ends

P(0) =p, =
P(l) =p;3= Co"'Cl"'Cz"'Cs

Differentiating we find p’(u) = ¢, +2uc,+3u?c,
Evaluating at end points

p’(0)=p’s=¢,
p’(l)=p’3= C1+2C2+3C3
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Matrix Form

Po
Ps
o

~ kO

1
1
0

Solving, we find c=M_,q where M, is the Hermite matrix

M.
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0

P

1 0
0 O
-3 3
2 =2

N O - O

0

1
—2

1

o — O

3

0

0
-1

1




- Blending Polynomials
p(u) = b(u)'q

_2u3—3u2+1_

—2u3+3y°

b(u) =
(1) u>—2u°+u

- uP-uf
Although these functions are smooth, the Hermite form
IS not used directly in Computer Graphics and CAD

because we usually have control points but not derivatives

However, the Hermite form is the basis of the Bezier form
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- Parametric and Geometric
{u . .
Continuity

*We can require the derivatives of x, y,and
Z 10 each be continuous at join points
(parametric continuity)

* Alternately, we can only require that the
tangents of the resulting curve be
continuous (geometry continuity)

* The latter gives more flexibility as we
have need satisfy only two conditions
rather than three at each join point
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* Here the p and g have the same tangents
at the ends of the segment but different
derivatives

 Generate different q(0)/

Hermite curves
* This techniques is used PO ‘
In drawing applications :

q(l)

N\ P11)
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> Higher Dimensional
_— Approximations

* The techniques for both interpolating and
Hermite curves can be used with higher
dimensional parametric polynomials

 For interpolating form, the resulting matrix
becomes increasingly more ill-conditioned
and the resulting curves less smooth and
more prone to numerical errors

*In both cases, there iIs more work In
rendering the resulting polynomial curves
and surfaces
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Surfaces

Ed Angel
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- Objectives

e Introduce the Bezier curves and surfaces
* Derive the required matrices

* Introduce the B-spline and compare it to
the standard cubic Bezier
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- Bezier’s Idea

*|n graphics and CAD, we do not usually
have derivative data

* Bezier suggested using the same 4 data
points as with the cubic interpolating
curve to approximate the derivatives in
the Hermite form
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~#" Approximating Derivatives

o P

p, located at u=1/3 p, located at u=2/3

p (1)~ B

I p1_po
0) ~
p'(0) 13

1/3

slope p’(0) 7™ /slope p’(1)

P3

pO Uu—m
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- Equations
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Interpolating conditions are the same

P(0) = po= ¢y
P(1) = p3 = CyH+Cy+Cy+Cs

Approximating derivative conditions

p’(0) = 3(p1-Po) = Cy
p’(1) = 3(p3-Pp,) = €, +2C,+3C;4

Solve four linear equations for c=Mgp
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- Bezier Matrix

1 0 0 0
3 3 0 0
Ms=l 3 6 3 o
-1 3 -3 1

p(u) = u'™gp =b(u)'p
blending functions

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015
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- Blending Functions
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1
(1_ u)3 0.8F
u(l-u)’| %
b(u)=| -
3U (1— U) -
3 02F
- u - 5 [ 1
OO 0.2 0.4 0.6 0.8 1

Note that all zeros are at 0 and 1 which forces
the functions to be smooth over (0,1)
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~#" Bernstein Polynomials

* The blending functions are a special case
of the Bernstein polynomials

Dra (U) = k!(dd; k)!uk(l—u)d_k

* These polynomials give the blending
polynomials for any degree Bezier form
- All zerosat0and 1

- For any degree they all sumto 1
- They are all between 0 and 1 inside (0,1)
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B Convex Hull Property
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* The properties of the Bernstein polynomials
ensure that all Bezier curves lie in the convex
hull of their control points

* Hence, even though we do not interpolate all the
data, we cannot be too far away

Py P,
._— convex hull

Bezier curve

Po P3
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*l. Bezier Patches
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Using same data array P=[p;] as with interpolating form

P V) =3 S bi(U)b; (V) p, = u” Ms P MLV

i=0 j=0

Patch lies in P30
convex hull P33

Poo Pos
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- Analysis
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* Although the Bezier form is much better than the
Interpolating form, we have the derivatives are not
continuous at join points

« Can we do better?
- Go to higher order Bezier
More work
Derivative continuity still only approximate
Supported by fixed function OpenGL
- Apply different conditions
Tricky without letting order increase
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- B-Splines

» Basis splines: use the data at p=[p;., pi.; p; Pi]’
to define curve only between p;; and p;

* Allows us to apply more continuity conditions to
each segment

 For cubics, we can have continuity of function,
first and second derivatives at join points

* Cost is 3 times as much work for curves
- Add one new point each time rather than three

* For surfaces, we do 9 times as much work
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~ Cubic B-spline

p(u) =u'Mgp =b(u)'p
1 4 1 0 Py®

Po®
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0
30 3 0 ——_
_ 0
Ms=l5 6 3 o PO}
1

®P;

p(l)
.p]
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- Blending Functions
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_ _ A b](U)
(1-u)’
p2 3
b(u):l 4-6y°+3y
6|1+3u+3y°-3y°
%

Ps3

convex hull property
Po
P
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- B-Spline Patches
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PV = bi(U)b; (V) P, = u” Ms P MLV

i=0 j=0
defined over only 1/9 of region

P30 /

P33

pOO po 3
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- Splines and Basis

* |f we examine the cubic B-spline from the
perspective of each control (data) point,
each interior point contributes (through
the blending functions) to four segments

*We can rewrite p(u) in terms of the data

points as
p(u) =" Bi(u) p,

defining the basis functions {B;(u)}
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~a Basis Functions
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In terms of the blending polynomials

Ve

0 u<i—2
A
bo(U+2) 1-2<u<i-1 bilu+1) bylu)
b (u+1) 1-1<u<Ii
Bi(U) =1 b, (U) I<u<i+l
b;(U=1) 1+1<u<i+?2
0 u>i+2
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- Generalizing Splines

*We can extend to splines of any degree

« Data and conditions to not have to given
at equally spaced values (the knots)
- Nonuniform and uniform splines

- Can have repeated knots
Can force spline to interpolate points

» Cox-deBoor recursion gives method of
evaluation
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- NURBS

* Nonuniform Rational B-Spline curves and
surfaces add a fourth variable w to x,y,z

- Can interpret as weight to give more
Importance to some control data

- Can also interpret as moving to homogeneous
coordinate

* Requires a perspective division
- NURBS act correctly for perspective viewing
* Quadrics are a special case of NURBS
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