
1

Introduction to Computer

Graphics with WebGL

Ed Angel

Professor Emeritus of Computer Science

Founding Director, Arts, Research,

Technology and Science Laboratory

University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Rendering Curves and Surfaces

Ed Angel

Professor Emeritus of Computer Science

University of New Mexico

2Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

3

Objectives

• Introduce methods to draw curves

- Approximate with lines

- Finite Differences

•Derive the recursive method for

evaluation of Bezier curves and surfaces

•Learn how to convert all polynomial data

to data for Bezier polynomials

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

4

Evaluating Polynomials

•Simplest method to render a polynomial

curve is to evaluate the polynomial at many

points and form an approximating polyline

•For surfaces we can form an approximating

mesh of triangles or quadrilaterals

•Use Horner’s method to evaluate

polynomials

p(u)=c0+u(c1+u(c2+uc3))

- 3 multiplications/evaluation for cubic

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

5

deCasteljau Recursion

•We can use the convex hull property of

Bezier curves to obtain an efficient

recursive method that does not require

any function evaluations

- Uses only the values at the control points

•Based on the idea that “any polynomial

and any part of a polynomial is a Bezier

polynomial for properly chosen control

data”

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

6

Splitting a Cubic Bezier

p0, p1 , p2 , p3 determine a cubic Bezier polynomial

and its convex hull

Consider left half l(u) and right half r(u)

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

7

l(u) and r(u)

Since l(u) and r(u) are Bezier curves, we should be able to

find two sets of control points {l0, l1, l2, l3} and {r0, r1, r2, r3}

that determine them

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

8

Convex Hulls

{l0, l1, l2, l3} and {r0, r1, r2, r3}each have a convex hull that

that is closer to p(u) than the convex hull of {p0, p1, p2, p3}

This is known as the variation diminishing property.

The polyline from l0 to l3 (= r0) to r3 is an approximation

to p(u). Repeating recursively we get better approximations.

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

9

Equations

Start with Bezier equations p(u)=uTMBp

l(u) must interpolate p(0) and p(1/2)

l(0) = l0 = p0

l(1) = l3 = p(1/2) = 1/8(p0 +3 p1 +3 p2 + p3)

Matching slopes, taking into account that l(u) and r(u)

only go over half the distance as p(u)

l’(0) = 3(l1 - l0) = p’(0) = 3/2(p1 - p0)

l’(1) = 3(l3 – l2) = p’(1/2) = 3/8(- p0 - p1+ p2 + p3)

Symmetric equations hold for r(u)

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

10

Efficient Form

l0 = p0

r3 = p3

l1 = ½(p0 + p1)

r1 = ½(p2 + p3)

l2 = ½(l1 + ½(p1 + p2))

r1 = ½(r2 + ½(p1 + p2))

l3 = r0 = ½(l2 + r1)

Requires only shifts and adds!

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

11

Every Curve is a Bezier

Curve

• We can render a given polynomial using the

recursive method if we find control points for its

representation as a Bezier curve

• Suppose that p(u) is given as an interpolating

curve with control points q

• There exist Bezier control points p such that

• Equating and solving, we find p=MB
-1MI

p(u)=uTMIq

p(u)=uTMBp

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

12

Matrices

Interpolating to Bezier

B-Spline to Bezier























−−

−−

=−

1000
6

5
3

2

3

3

1
3

1

2

3
3

6

5
0001

1
MM IB



















=−

1410

0420

0240

0141

1
MM SB

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

13

Example

These three curves were all generated from the same

original data using Bezier recursion by converting all

control point data to Bezier control points

Bezier Interpolating B Spline

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

14

Surfaces

• Can apply the recursive method to surfaces if

we recall that for a Bezier patch curves of

constant u (or v) are Bezier curves in u (or v)

• First subdivide in u

- Process creates new points

- Some of the original points are discarded

original and kept new

original and discarded

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

15

Second Subdivision

16 final points for

1 of 4 patches created

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

16

Normals

•For rendering we need the normals if we

want to shade

- Can compute from parametric equations

- Can use vertices of corner points to determine

- OpenGL can compute automatically

v

vu

u

vu









=

),(),(pp
n

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Rendering Other Polynomials

•Every polynomial is a Bezier polynomial

for some set of control data

•We can use a Bezier renderer if we first

convert the given control data to Bezier

control data

- Equivalent to converting between matrices

•Example: Interpolating to Bezier

MB = MIMBI

17Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

18

Utah Teapot

• Most famous data set in computer graphics

• Widely available as a list of 306 3D vertices and

the indices that define 32 Bezier patches

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

19

Quadrics

• Any quadric can be written as the quadratic form

pTAp+bTp+c=0 where p=[x, y, z]T

with A, b and c giving the coefficients

• Render by ray casting

- Intersect with parametric ray p(a)=p0+ad that
passes through a pixel

- Yields a scalar quadratic equation

• No solution: ray misses quadric

• One solution: ray tangent to quadric

• Two solutions: entry and exit points

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

20

Introduction to Computer

Graphics with WebGL

Ed Angel

Professor Emeritus of Computer Science

Founding Director, Arts, Research,

Technology and Science Laboratory

University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Rendering the Teapot

Ed Angel

Professor Emeritus of Computer Science

University of New Mexico

21Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

22

Objectives

•Look at rendering with WebGL

•Use Utah teapot for examples

- Recursive subdivision

- Polynomial evaluation

- Adding lighting

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

23

Utah Teapot

• Most famous data set in computer graphics

• Widely available as a list of 306 3D vertices and

the indices that define 32 Bezier patches

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

vertices.js

24

var numTeapotVertices = 306;

var vertices = [

vec3(1.4 , 0.0 , 2.4),

vec3(1.4 , -0.784 , 2.4),

vec3(0.784 , -1.4 , 2.4),

vec3(0.0 , -1.4 , 2.4),

vec3(1.3375 , 0.0 , 2.53125),

.

.

.

];

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

patches.js

25

var numTeapotPatches = 32;

var indices = new Array(numTeapotPatches);

indices[0] = [0, 1, 2, 3,

4, 5, 6, 7,

8, 9, 10, 11,

12, 13, 14, 15

];

indices[1] = [3, 16, 17, 18,

.

.

];

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Evaluation of Polynomials

26Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Bezier Function

27

bezier = function(u) {

var b = [];

var a = 1-u;

b.push(u*u*u);

b.push(3*a*u*u);

b.push(3*a*a*u);

b.push(a*a*a);

return b;

}

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Patch Indices to Data

28

var h = 1.0/numDivisions;

patch = new Array(numTeapotPatches);

for(var i=0; i<numTeapotPatches; i++)

patch[i] = new Array(16);

for(var i=0; i<numTeapotPatches; i++)

for(j=0; j<16; j++) {

patch[i][j] = vec4([vertices[indices[i][j]][0],

vertices[indices[i][j]][2],

vertices[indices[i][j]][1], 1.0]);

}

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Vertex Data

29

for (var n = 0; n < numTeapotPatches; n++) {

var data = new Array(numDivisions+1);

for(var j = 0; j<= numDivisions; j++) data[j] = new Array(numDivisions+1);

for(var i=0; i<=numDivisions; i++) for(var j=0; j<= numDivisions; j++) {

data[i][j] = vec4(0,0,0,1);

var u = i*h;

var v = j*h;

var t = new Array(4);

for(var ii=0; ii<4; ii++) t[ii]=new Array(4);

for(var ii=0; ii<4; ii++) for(var jj=0; jj<4; jj++)

t[ii][jj] = bezier(u)[ii]*bezier(v)[jj];

for(var ii=0; ii<4; ii++) for(var jj=0; jj<4; jj++) {

temp = vec4(patch[n][4*ii+jj]);

temp = scale(t[ii][jj], temp);

data[i][j] = add(data[i][j], temp);

}

}Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Quads

30

for(var i=0; i<numDivisions; i++)

for(var j =0; j<numDivisions; j++) {

points.push(data[i][j]);

points.push(data[i+1][j]);

points.push(data[i+1][j+1]);

points.push(data[i][j]);

points.push(data[i+1][j+1]);

points.push(data[i][j+1]);

index += 6;

}

}

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Recursive Subdivision

31Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Divide Curve

32

divideCurve = function(c, r , l){

// divides c into left (l) and right (r) curve data

var mid = mix(c[1], c[2], 0.5);

l[0] = vec4(c[0]);

l[1] = mix(c[0], c[1], 0.5);

l[2] = mix(l[1], mid, 0.5);

r[3] = vec4(c[3]);

r[2] = mix(c[2], c[3], 0.5);

r[1] = mix(mid, r[2], 0.5);

r[0] = mix(l[2], r[1], 0.5);

l[3] = vec4(r[0]); return;

}

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Divide Patch

33

dividePatch = function (p, count) {

if (count > 0) {

var a = mat4();

var b = mat4();

var t = mat4();

var q = mat4();

var r = mat4();

var s = mat4();

// subdivide curves in u direction, transpose results, divide

// in u direction again (equivalent to subdivision in v)

for (var k = 0; k < 4; ++k) {

var pp = p[k];

var aa = vec4();

var bb = vec4();

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Divide Patch

34

divideCurve(pp, aa, bb);

a[k] = vec4(aa);

b[k] = vec4(bb);

}

a = transpose(a);

b = transpose(b);

for (var k = 0; k < 4; ++k) {

var pp = vec4(a[k]);

var aa = vec4();

var bb = vec4();

divideCurve(pp, aa, bb);

q[k] = vec4(aa);

r[k] = vec4(bb);

}

for (var k = 0; k < 4; ++k) {

var pp = vec4(b[k]);

var aa = vec4(); Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Divide Patch

35

var bb = vec4();

divideCurve(pp, aa, bb);

t[k] = vec4(bb);

}

// recursive division of 4 resulting patches

dividePatch(q, count - 1);

dividePatch(r, count - 1);

dividePatch(s, count - 1);

dividePatch(t, count - 1);

}

else {

drawPatch(p);

}

return;

}
Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Draw Patch

36

drawPatch = function(p) {

// Draw the quad (as two triangles) bounded by

// corners of the Bezier patch

points.push(p[0][0]);

points.push(p[0][3]);

points.push(p[3][3]);

points.push(p[0][0]);

points.push(p[3][3]);

points.push(p[3][0]);

index+=6;

return;

}

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Adding Shading

37Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Using Face Normals

38

var t1 = subtract(data[i+1][j], data[i][j]);

var t2 =subtract(data[i+1][j+1], data[i][j]);

var normal = cross(t1, t2);

normal = normalize(normal);

normal[3] = 0;

points.push(data[i][j]); normals.push(normal);

points.push(data[i+1][j]); normals.push(normal);

points.push(data[i+1][j+1]); normals.push(normal);

points.push(data[i][j]); normals.push(normal);

points.push(data[i+1][j+1]); normals.push(normal);

points.push(data[i][j+1]); normals.push(normal);

index+= 6;

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Exact Normals

39

nbezier = function(u) {

var b = [];

b.push(3*u*u);

b.push(3*u*(2-3*u));

b.push(3*(1-4*u+3*u*u));

b.push(-3*(1-u)*(1-u));

return b;

}

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Geometry Shader

•Basic limitation on rasterization is that

each execution of a vertex shader is

triggered by one vertex and can output

only one vertex

•Geometry shaders allow a single vertex

and other data to produce many vertices

•Example: send four control points to a

geometry shader and it can produce as

many points as needed for Bezier curve

40Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Tessellation Shaders

•Can take many data points and produce

triangles

•More complex since tessellation has to

deal with inside/outside issues and

topological issues such as holes

•Neither geometry or tessellation shaders

supported by ES

•ES 3.1 (just announced) has compute

shaders

41Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

