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Objectives

• Introduce methods to draw curves

- Approximate with lines

- Finite Differences

•Derive the recursive method for 

evaluation of Bezier curves and surfaces

•Learn how to convert all polynomial data 

to data for Bezier polynomials
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Evaluating Polynomials

•Simplest method to render a polynomial 

curve is to evaluate the polynomial at many 

points and form an approximating polyline

•For surfaces we can form an approximating 

mesh of triangles or quadrilaterals

•Use Horner’s method to evaluate 

polynomials

p(u)=c0+u(c1+u(c2+uc3))

- 3 multiplications/evaluation for cubic
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deCasteljau Recursion

•We can use the convex hull property of 

Bezier curves to obtain an efficient 

recursive method that does not require 

any function evaluations

- Uses only the values at the control points

•Based on the idea that “any polynomial 

and any part of a polynomial is a Bezier 

polynomial for properly chosen control 

data”
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Splitting a Cubic Bezier

p0, p1 , p2 , p3 determine a cubic Bezier polynomial

and its convex hull

Consider left half l(u) and right half r(u)
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l(u) and r(u)

Since l(u) and r(u) are Bezier curves, we should be able to

find two sets of control points {l0, l1, l2, l3} and {r0, r1, r2, r3}

that determine them
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Convex Hulls

{l0, l1, l2, l3} and {r0, r1, r2, r3}each have a convex hull that

that is closer to p(u) than the convex hull of {p0, p1, p2, p3}

This is known as the variation diminishing property.

The polyline from l0 to l3 (= r0) to r3 is an approximation 

to p(u). Repeating recursively we get better approximations.

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 



9

Equations

Start with Bezier equations p(u)=uTMBp

l(u) must interpolate p(0) and p(1/2)

l(0) = l0 = p0

l(1) = l3 = p(1/2) = 1/8( p0 +3 p1 +3 p2 + p3 )

Matching slopes, taking into account that l(u) and r(u)

only go over half the distance as p(u)

l’(0) = 3(l1 - l0) = p’(0) = 3/2(p1 - p0 )

l’(1) = 3(l3 – l2) = p’(1/2) = 3/8(- p0 - p1+ p2 + p3)

Symmetric equations hold for r(u)
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Efficient Form

l0 = p0

r3 = p3

l1 = ½(p0 + p1)

r1 = ½(p2 + p3)

l2 = ½(l1 + ½( p1 + p2))

r1 = ½(r2 + ½( p1 + p2))

l3 = r0 = ½(l2 + r1)

Requires only shifts and adds!
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Every Curve is a Bezier 

Curve

• We can render a given polynomial using the 

recursive method if we find control points for its 

representation as a Bezier curve 

• Suppose that p(u) is given as an interpolating 

curve with control points q

• There exist Bezier control points p such that

• Equating and solving, we find p=MB
-1MI

p(u)=uTMIq

p(u)=uTMBp
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Matrices

Interpolating to Bezier

B-Spline to Bezier
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Example

These three curves were all generated from the same

original data using Bezier recursion by converting all

control point data to Bezier control points

Bezier Interpolating B Spline
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Surfaces

• Can apply the recursive method to surfaces if 

we recall that for a Bezier patch curves of 

constant u (or v) are Bezier curves in u (or v)

• First subdivide in u 

- Process creates new points 

- Some of the original points are discarded

original and kept new

original and discarded
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Second Subdivision

16 final points for

1 of 4 patches created
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Normals

•For rendering we need the normals if we 

want to shade

- Can compute from parametric equations

- Can use vertices of corner points to determine

- OpenGL can compute automatically
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Rendering Other Polynomials

•Every polynomial is a Bezier polynomial 

for some set of control data

•We can use a Bezier renderer if we first 

convert the given control data to Bezier 

control data

- Equivalent to converting between matrices

•Example: Interpolating to Bezier

MB = MIMBI
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Utah Teapot

• Most famous data set in computer graphics

• Widely available as a list of 306 3D vertices and 

the indices that define 32 Bezier patches
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Quadrics

• Any quadric can be written as the quadratic form

pTAp+bTp+c=0 where p=[x, y, z]T

with A, b and c giving the coefficients

• Render by ray casting

- Intersect with parametric ray p(a)=p0+ad that 
passes through a pixel

- Yields a scalar quadratic equation

• No solution: ray misses quadric

• One solution: ray tangent to quadric

• Two solutions: entry and exit points
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Objectives

•Look at rendering with WebGL

•Use Utah teapot for examples

- Recursive subdivision

- Polynomial evaluation

- Adding lighting

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 



23

Utah Teapot

• Most famous data set in computer graphics

• Widely available as a list of 306 3D vertices and 

the indices that define 32 Bezier patches
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vertices.js
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var numTeapotVertices = 306;

var vertices = [

vec3(1.4 , 0.0 , 2.4),

vec3(1.4 , -0.784 , 2.4),

vec3(0.784 , -1.4 , 2.4),

vec3(0.0 , -1.4 , 2.4),

vec3(1.3375 , 0.0 , 2.53125),

.

.

.

];
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patches.js
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var numTeapotPatches = 32;

var indices = new Array(numTeapotPatches);

indices[0] = [0, 1, 2, 3,

4, 5, 6, 7,

8, 9, 10, 11,

12, 13, 14, 15

];

indices[1] = [3, 16, 17, 18,

.

.

];
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Evaluation of Polynomials
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Bezier Function
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bezier = function(u) {

var b = [];

var a = 1-u;

b.push(u*u*u);

b.push(3*a*u*u);

b.push(3*a*a*u);

b.push(a*a*a); 

return b;

}
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Patch Indices to Data
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var h = 1.0/numDivisions;

patch = new Array(numTeapotPatches);

for(var i=0; i<numTeapotPatches; i++)

patch[i] = new Array(16);

for(var i=0; i<numTeapotPatches; i++)

for(j=0; j<16; j++) {

patch[i][j] = vec4([vertices[indices[i][j]][0],

vertices[indices[i][j]][2],

vertices[indices[i][j]][1], 1.0]);

}
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Vertex Data
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for ( var n = 0; n < numTeapotPatches; n++ ) {

var data = new Array(numDivisions+1);

for(var j = 0; j<= numDivisions; j++) data[j] = new Array(numDivisions+1);

for(var i=0; i<=numDivisions; i++) for(var j=0; j<= numDivisions; j++) {

data[i][j] = vec4(0,0,0,1);

var u = i*h;

var v = j*h;

var t = new Array(4);

for(var ii=0; ii<4; ii++) t[ii]=new Array(4);

for(var ii=0; ii<4; ii++) for(var jj=0; jj<4; jj++)

t[ii][jj] = bezier(u)[ii]*bezier(v)[jj];

for(var ii=0; ii<4; ii++) for(var jj=0; jj<4; jj++) {

temp = vec4(patch[n][4*ii+jj]);

temp = scale( t[ii][jj], temp);

data[i][j] = add(data[i][j], temp);

}
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Quads
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for(var i=0; i<numDivisions; i++)

for(var j =0; j<numDivisions; j++) {

points.push(data[i][j]);

points.push(data[i+1][j]);

points.push(data[i+1][j+1]);

points.push(data[i][j]); 

points.push(data[i+1][j+1]);

points.push(data[i][j+1]);

index += 6;

}

}
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Recursive Subdivision
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Divide Curve
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divideCurve = function( c, r , l){

// divides c into left (l) and right ( r ) curve data  

var mid = mix(c[1], c[2], 0.5);

l[0] = vec4(c[0]);

l[1] = mix(c[0], c[1], 0.5 );

l[2] = mix(l[1], mid, 0.5 );

r[3] = vec4(c[3]);

r[2] = mix(c[2], c[3], 0.5 );

r[1] = mix( mid, r[2], 0.5 );

r[0] = mix(l[2], r[1], 0.5 );

l[3] = vec4(r[0]);    return;

}
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Divide Patch
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dividePatch = function (p, count ) {

if ( count > 0 ) {

var a =  mat4();

var b =  mat4();

var t = mat4();

var q = mat4();

var r = mat4();

var s = mat4();

// subdivide curves in u direction, transpose results, divide

// in u direction again (equivalent to subdivision in v)

for ( var k = 0; k < 4; ++k ) {

var pp = p[k];

var aa = vec4();

var bb = vec4();
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Divide Patch
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divideCurve( pp, aa, bb );

a[k] = vec4(aa);

b[k] = vec4(bb); 

}

a = transpose( a );

b = transpose( b );

for ( var k = 0; k < 4; ++k ) {

var pp = vec4(a[k]);

var aa = vec4();

var bb = vec4();

divideCurve( pp, aa, bb );

q[k] = vec4(aa);

r[k] = vec4(bb);

}

for ( var k = 0; k < 4; ++k ) {

var pp = vec4(b[k]);
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Divide Patch
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var bb = vec4();                                

divideCurve( pp, aa, bb );

t[k] = vec4(bb);

}

// recursive division of 4 resulting patches

dividePatch( q, count - 1 );

dividePatch( r, count - 1 );

dividePatch( s, count - 1 );

dividePatch( t, count - 1 );

}

else {

drawPatch( p );

}

return;

}
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Draw Patch
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drawPatch = function(p) {

// Draw the quad (as two triangles) bounded by

//   corners of the Bezier patch

points.push(p[0][0]);

points.push(p[0][3]);

points.push(p[3][3]);

points.push(p[0][0]);

points.push(p[3][3]);

points.push(p[3][0]);

index+=6;

return;

}
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Adding Shading
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Using Face Normals
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var t1 = subtract(data[i+1][j], data[i][j]);

var t2  =subtract(data[i+1][j+1], data[i][j]);

var normal = cross(t1, t2);

normal = normalize(normal);

normal[3] =  0;

points.push(data[i][j]);            normals.push(normal);

points.push(data[i+1][j]);        normals.push(normal); 

points.push(data[i+1][j+1]);    normals.push(normal); 

points.push(data[i][j]);             normals.push(normal);

points.push(data[i+1][j+1]);    normals.push(normal);      

points.push(data[i][j+1]);        normals.push(normal);

index+= 6;
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Exact Normals
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nbezier = function(u) {

var b = [];

b.push(3*u*u);

b.push(3*u*(2-3*u));

b.push(3*(1-4*u+3*u*u));

b.push(-3*(1-u)*(1-u));

return b;

}
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Geometry Shader

•Basic limitation on rasterization is that 

each execution of a vertex shader is 

triggered by one vertex and can output 

only one vertex

•Geometry shaders allow a single vertex 

and other data to produce many vertices

•Example: send four control points to a 

geometry shader and it can produce as 

many points as needed for Bezier curve
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Tessellation Shaders

•Can take many data points and produce 

triangles

•More complex since tessellation has to 

deal with inside/outside issues and 

topological issues such as holes

•Neither geometry or tessellation shaders 

supported by ES

•ES 3.1 (just announced) has compute 

shaders
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