Machine Learning

CENG 499
Introduction to Data Science

Erdogan Dogdu

Machine Learning

ML
— Creating and using models that are learned from data
— Predictive modelling

— Data mining

e Model

— a specification of a mathematical (or probabilistic)
relationship that exists between different variables

e Goal

— Use existing data to develop models that we can use
to predict various outcomes for new data

Machine Learning

e Examples

— Predicting whether an email message is spam or
not

— Predicting whether a credit card transaction is
fraudulent

— Predicting which advertisement a shopper is most
likely to click on

— Predicting which football team is going to win the
Super Bowl

Machine Learning Models

e Supervised

—there is a set of data labeled with the correct
answers to learn from

* Unsupervised

— there are no such labels

* Semisupervised

— only some of the data are labeled

Overfitting and Underfitting

* Qverfitting
— producing a model that per- forms well on the

data you train it on but that generalizes poorly to
any new data

* Underfitting

— producing a model that doesn’t perform well even
on the training data

» Keep searching for a working model

Overfitting and Underfitting

Best Fit Polynomials of Various Degrees
20 | : - - degree 0
: —— degree 1
degree 9
15+
10} -
S5t -
0k
0 2 4 6 8 10

Figure 11-1. Overfitting and underfitting

Overfitting and Underfitting

* Models that are too complex lead to
overfitting and don’t generalize well beyond

the data they were trained on
e Use different data to train the model and to

test the model.
— Example: Split data into 3 parts, use 2 for training,
and 1 for testing (66% vs 33%)

Train vs Test Split

def split data(data, prob):
"""split data into fractions [prob, 1 - prob]
results = [], []
for row in data:
results[® if random.random() < prob else 1].append(row)

return results

mnmmnn

def train_test split(x, y, test_pct):

data = zip(x, y) # pair corresponding values
train, test = split_data(data, 1 - test_pct) # split the data set of pairs
x_train, y_train = zip(*train) # magical un-zip trick

x_test, y_test = zip(*test)
return x_train, x_test, y_train, y_test
e —
model = SomeKindOfModel()
x_train, x_test, y_train, y_test = train_test_split(xs, ys, 0.33)
model.train(x_train, y_train)
performance = model.test(x_test, y_test)

Overfitting

 Still might be overfitting if

— there are common patterns in the test and train
data that wouldn’t generalize to a larger data set.

* Or, if you are using test set to choose from a
number of models,

— Then split data into train, validate, test sets

Correctness

* Given a set of “labeled” data and a predictive

model, data points lie in one of these categories:

— True positive: “This message is spam, and we
correctly predicted spam.”

— False positive (Type 1 Error): “This message is not
spam, but we predicted spam.”

— False negative (Type 2 Error): “This message is spam,
but we predicted not spam.”

— True negative: “This message is not spam, and we
correctly predicted not spam.”

10

Confusion Matrix

Spam not Spam

predict “Spam” True Positive False Positive

predict “Not Spam” False Negative True Negative

11

Accuracy

. Predict leukemia i

and only if the baby “ke” 70 4,930 5,000
is named Luke not“Luke” 13930 981,070 995,000
(which sounds sort

. . totall 14000 986,000 1,000,000
of like “leukemia”)

def accuracy(tp, fp, fn, tn):
correct = tp + tn
total = tp + fp + fn + tn
return correct / total

print accuracy(70, 4930, 13930, 981070) # 0.98114 | Good?

12

Precision & Recall & F1

Precision: how accurate our positive predictions were
def precision(tp, fp, fn, tn):
return tp / (tp + fp)

print precision(70, 4930, 13930, 981070) # 0.014

Recall: what fraction of the positives our model identified
def recall(tp, fp, fn, tn):
return tp / (tp + fn)

print recall(70, 4930, 13930, 981070) # 0.005

F1: harmonic mean of def f1 score(tp, fp, fn, tn):
p = precision(tp, fp, fn, tn)

precision and recall and r = recall(tp, fp, fn, tn)

necessarily lies between
them return 2 * p*r [/ (p + r)

13

Model Correctness

* Choice of a model involves a trade-off
between precision and recall.

— A model that predicts “yes” when it’s even a little
bit confident will probably have a high recall but a
low precision;

— A model that predicts “yes” only when it’s
extremely confident is likely to have a low recall
and a high precision.

Feature Extraction and Selection

* Features: inputs we provide to our model

* When your data doesn’t have enough
features, your model is likely to underfit.

* When your data has too many features, it’s
easy to overfit.

Feature Engineering

* Simple case: features are given

— Example:
* Given: Years of experience, Salary
* Predict: Salary based on years of experience

 Extract features:

— Spam detection
e Given: Email texts

* Extract features:
— f1: Does the email contain the word “Viagra”?
— f2: How many times does the letter d appear?
— f3: What was the domain of the sender?

Model Type

The type of features constrains the type of
model

Yes-No features

— Naive Bayes model

Numeric features

— Regression model

Numeric or categorical features

— Decision trees model

17

Feature Engineering

* Remove features
— Dimensionality reduction
— Regularization

* How to do all of these:
— Experience
— Domain expertise

