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Machine Learning

ML
— Creating and using models that are learned from data
— Predictive modelling

— Data mining

e Model

— a specification of a mathematical (or probabilistic)
relationship that exists between different variables

e Goal

— Use existing data to develop models that we can use
to predict various outcomes for new data




Machine Learning

e Examples

— Predicting whether an email message is spam or
not

— Predicting whether a credit card transaction is
fraudulent

— Predicting which advertisement a shopper is most
likely to click on

— Predicting which football team is going to win the
Super Bowl



Machine Learning Models

e Supervised

—there is a set of data labeled with the correct
answers to learn from

* Unsupervised

— there are no such labels

* Semisupervised

— only some of the data are labeled



Overfitting and Underfitting

* Qverfitting
— producing a model that per- forms well on the

data you train it on but that generalizes poorly to
any new data

* Underfitting

— producing a model that doesn’t perform well even
on the training data

» Keep searching for a working model



Overfitting and Underfitting
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Figure 11-1. Overfitting and underfitting




Overfitting and Underfitting

* Models that are too complex lead to
overfitting and don’t generalize well beyond

the data they were trained on
e Use different data to train the model and to

test the model.
— Example: Split data into 3 parts, use 2 for training,
and 1 for testing (66% vs 33%)



Train vs Test Split

def split data(data, prob):
"""split data into fractions [prob, 1 - prob]
results = [], []
for row in data:
results[® if random.random() < prob else 1].append(row)

return results
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def train_test split(x, y, test_pct):

data = zip(x, y) # pair corresponding values
train, test = split_data(data, 1 - test_pct) # split the data set of pairs
x_train, y_train = zip(*train) # magical un-zip trick

x_test, y_test = zip(*test)
return x_train, x_test, y_train, y_test
e —
model = SomeKindOfModel()
x_train, x_test, y_train, y_test = train_test_split(xs, ys, 0.33)
model.train(x_train, y_train)
performance = model.test(x_test, y_test)




Overfitting

 Still might be overfitting if

— there are common patterns in the test and train
data that wouldn’t generalize to a larger data set.

* Or, if you are using test set to choose from a
number of models,

— Then split data into train, validate, test sets



Correctness

* Given a set of “labeled” data and a predictive

model, data points lie in one of these categories:

— True positive: “This message is spam, and we
correctly predicted spam.”

— False positive (Type 1 Error): “This message is not
spam, but we predicted spam.”

— False negative (Type 2 Error): “This message is spam,
but we predicted not spam.”

— True negative: “This message is not spam, and we
correctly predicted not spam.”
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Confusion Matrix

Spam not Spam

predict “Spam” True Positive  False Positive

predict “Not Spam” False Negative True Negative
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Accuracy

. Predict leukemia i

and only if the baby  “ke” 70 4,930 5,000
is named Luke not“Luke” 13930 981,070 995,000
(which sounds sort

. . totall 14000 986,000 1,000,000
of like “leukemia”)

def accuracy(tp, fp, fn, tn):
correct = tp + tn
total = tp + fp + fn + tn
return correct / total

print accuracy(70, 4930, 13930, 981070) # 0.98114 | Good?
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Precision & Recall & F1

Precision: how accurate our positive predictions were
def precision(tp, fp, fn, tn):
return tp / (tp + fp)

print precision(70, 4930, 13930, 981070) # 0.014

Recall: what fraction of the positives our model identified
def recall(tp, fp, fn, tn):
return tp / (tp + fn)

print recall(70, 4930, 13930, 981070) # 0.005

F1: harmonic mean of def f1 score(tp, fp, fn, tn):
p = precision(tp, fp, fn, tn)

precision and recall and r = recall(tp, fp, fn, tn)

necessarily lies between
them return 2 * p*r [/ (p + r)
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Model Correctness

* Choice of a model involves a trade-off
between precision and recall.

— A model that predicts “yes” when it’s even a little
bit confident will probably have a high recall but a
low precision;

— A model that predicts “yes” only when it’s
extremely confident is likely to have a low recall
and a high precision.



Feature Extraction and Selection

* Features: inputs we provide to our model

* When your data doesn’t have enough
features, your model is likely to underfit.

* When your data has too many features, it’s
easy to overfit.




Feature Engineering

* Simple case: features are given

— Example:
* Given: Years of experience, Salary
* Predict: Salary based on years of experience

 Extract features:

— Spam detection
e Given: Email texts

* Extract features:
— f1: Does the email contain the word “Viagra”?
— f2: How many times does the letter d appear?
— f3: What was the domain of the sender?



Model Type

The type of features constrains the type of
model

Yes-No features

— Naive Bayes model

Numeric features

— Regression model

Numeric or categorical features

— Decision trees model
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Feature Engineering

* Remove features
— Dimensionality reduction
— Regularization

* How to do all of these:
— Experience
— Domain expertise



