
asg2-sol

May 23, 2018

1 Introduction to Data Science - Homework 2 - Solutions

CENG 499
Adapted from University of Utah - Data Science Course
Due: Sunday, Mar 11, 11:59pm.
In this homework you will read in and analyze a movies dataset. First we’ll do some basic

analysis with vanilla Python, then we’ll move on to doing more advanced analysis with Pandas.

1.1 Your Data

Fill out the following information:
First Name:

Last Name:
E-mail:
Student ID:

1.2 Part 1: Analyzing Data The Hard Way

In this part we’ll do some manual analysis of a movies dataset.

1.2.1 Task 1.1: Read in the data

Parse the file movies.csv using the csv library. Lecture 6 and/or Homework 2 might be a good
inspiration for this.

We recommend that you store the header in a separate array. Make sure that at least the
"ratings" and the "votes" columns are cast to the appropriate data types for doing calculations
with them.

Print the header, a row of the table, and the number of rows and columns.

In [2]: # import the csv library

import csv

initialize the top-level array

movies = []

header = []

cnt = 0

1

http://pandas.pydata.org/pandas-docs/stable
movies.csv
https://docs.python.org/3/library/csv.html

with open('movies.csv', newline='') as f:

reader = csv.reader(f)

for row in reader: # iterate over the lines in the file

if cnt == 0: # first line

header = row # get the headers

else:

append to movies list, change the following line

movies.append(row)

cnt += 1

print(len(movies))

header

Out[2]: ['',

'title',

'year',

'length',

'budget',

'rating',

'votes',

'r1',

'r2',

'r3',

'r4',

'r5',

'r6',

'r7',

'r8',

'r9',

'r10',

'mpaa',

'Action',

'Animation',

'Comedy',

'Drama',

'Documentary',

'Romance',

'Short']

1.2.2 Task 1.2: Calculate movie stats

In this task, you will calculate some statistics about movies. We suggest you implement your
solutions for Tasks 1.2.1-1.2.3 in one code cell - you should be able to calculate this in a single
iteration over the dataset.

Task 1.2.1 Calcualte average ratings Compute the average rating for the movies and print the
output. Also print the number of movies. Your output could look like this:

Average rating: xxx.xxxx, Number of movies: xx

2

Task 1.2.2: Calculate average rating for major movies Compute the average rating for the
movies that have more than 500 votes in your loaded dataset and print the output. (We’ll call
these movies with more than 500 votes major movies from now on).

Your output could look like this:

Average rating of movies with more than 500 votes: xxx.xxxx, Number of major movies: xx

Task 1.2.3: Find the highest rated major movie Find out which of the movies with more than
500 votes has the highest rating.

Your output could look like this:

Highest rating: xxx.xxxx, Title: MOVIE TITLE

Task 1.2.4: Interpret the data

• What’s the size relationship of major movies to all movies?
• Are major movies usually better than the average movies?

In [19]: # Task 1.2.1 Calcualte average ratings

sum = 0

cnt = 0

for row in movies:

sum += float(row[5])

cnt += 1

print('Average rating: ' + str(round(sum/len(movies),4)) + ', Number of movies: ' + str(len(movies)))

Task 1.2.2: Calculate average rating for major movies

sum = 0

cnt_major = 0

for row in movies:

try:

if int(row[6]) >= 500:

cnt_major += 1

sum += float(row[5])

except ValueError:

continue

print('Average rating of movies with more than 500 votes: ' + str(round(sum/cnt_major,4)) + ', Number of major movies: ' + str(cnt_major))

Task 1.2.3: Find the highest rated major movie

high_rate = 0

high_movie = 0

cnt = 0

for row in movies:

try:

if int(row[5]) > high_rate:

high_rate = int(row[5])

high_movie = cnt

except ValueError:

3

continue

cnt += 1

print('Highest rating: ' + str(high_rate) + ', Title: ')

Average rating: 5.9329, Number of movies: 58788

Average rating of movies with more than 500 votes: 6.3705, Number of major movies: 6462

Highest rating: 10, Title:

Your Interpretation:
About 10% of the movies are major movies.
Major movies have a slightly lower average rating than all movies.

1.3 Part 2: Pandas

In this part we will use the Pandas library for our analysis.

1.3.1 Task 2.1: Loading data

Read in the data again. This time you should create a Pandas DataFrame. Print the head of the
dataset. * How many data rows did you load? How many columns? * Of which data types are the
columns? * Do you have to do manual data type conversions?

In [22]: # Task 2.1: Loading data

import pansas and numpy

import pandas as pd

movies_pd = pd.read_csv("movies.csv")

movies_pd.head(2)

Out[22]: Unnamed: 0 title year length budget rating votes r1 \

0 1 $ 1971 121 NaN 6.4 348 4.5

1 2 $1000 a Touchdown 1939 71 NaN 6.0 20 0.0

r2 r3 ... r9 r10 mpaa Action Animation Comedy Drama \

0 4.5 4.5 ... 4.5 4.5 NaN 0 0 1 1

1 14.5 4.5 ... 4.5 14.5 NaN 0 0 1 0

Documentary Romance Short

0 0 0 0

1 0 0 0

[2 rows x 25 columns]

In [23]: # print data types

movies_pd.dtypes

4

http://pandas.pydata.org/pandas-docs/stable
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html

Out[23]: Unnamed: 0 int64

title object

year int64

length int64

budget float64

rating float64

votes int64

r1 float64

r2 float64

r3 float64

r4 float64

r5 float64

r6 float64

r7 float64

r8 float64

r9 float64

r10 float64

mpaa object

Action int64

Animation int64

Comedy int64

Drama int64

Documentary int64

Romance int64

Short int64

dtype: object

Your Interpretation: Looks line no, no need for data conversion.

1.3.2 Task 2.2: Calculate the average rating

Compute the average rating for all movies and print the output in a formatted way.
Your output could look like this:

Average rating: xxx.xxxx

In [24]: # Task 2.2: Calculate the average rating

print('Average rating: ' + str("%8.4f" % movies_pd['rating'].mean()))

Average rating: 5.9329

1.3.3 Task 2.3: Compare the runtime

Measure the runtime of the mean calculation using Pandas and compare it to the computation
time for calculating the mean using a for loop (you can copy the relevant parts from part one).

You can use time.clock() to set timestamps before and after the execution of the code you want
to measure, then you simply substract end time from start time.

5

http://pandas.pydata.org/pandas-docs/stable
https://docs.python.org/3/library/time.html

Print your results in a human readable way and add a metric to the output. Calculate the factor
of the difference and print it. Note that the exact times and the factors will vary when you re-run
this and especially between machines.

E.g.:
time using own code: xxx.xxx s
time using Pandas: xxx.xxx s
difference factor: xxx

In [28]: # Task 2.3: Compare the runtime

import time

start = time.clock()

sum = 0

for row in movies:

try:

sum += float(row[5])

except ValueError:

continue

print('Average rating: ' + str(round(sum/len(movies),4)) + ', Number of movies: ' + str(len(movies)))

time_loop = time.clock() - start

print("time using own code",time_loop,"s")

start = time.clock()

print('Average rating: ' + str("%8.4f" % movies_pd['rating'].mean()))

time_pandas = time.clock() - start

print("time using Pandas",time_pandas,"s")

print("difference factor: ",str("%0.4f" % (time_pandas/time_loop)))

Average rating: 5.9329, Number of movies: 58788

time using own code 0.034253999999999785 s

Average rating: 5.9329

time using Pandas 0.000588000000000477 s

difference factor: 0.0172

1.3.4 Task 2.4: Filter out rows

The whole movies dataset has about 60k entries. Use pandas to filter your dataframe to contain
only the major movies with more than 500 votes.

Count and print the number of movies with more than 500 votes.
E.g.: xxx.xxx movies have more than 500 votes.

In [29]: # Task 2.4: Filter out rows

majorMovies = movies_pd[movies_pd.votes>500]

print(len(majorMovies), "movies have more than 500 votes")

6

6458 movies have more than 500 votes

1.3.5 Task 2.5: Calculate the average rating for major movies

Compute the average rating for the major movies. Your output could look like this:

Average rating of movies with more than 500 votes: xxx.xxxx

In [51]: # Task 2.5: Calculate the average rating for major movies

avg_rate_major_movies = movies_pd[movies_pd.votes > 500].rating.mean()

print('Average rating of movies with more than 500 votes:', str("%8.4f" % avg_rate_major_movies))

Average rating of movies with more than 500 votes: 6.3706

1.3.6 Task 2.6: Find the highest rated major movie

Find the highest rated major movie in the dataframe. Hint: idxmax() could be a helpful function.
Print the title and the rating.
Your output could look like this:

Highest rated movie: TITLE, rating: x.x

In [31]: # Task 2.6: Find the highest rated major movie

maxrate = majorMovies.rating.max()

maxMovies = majorMovies[majorMovies.rating == maxrate]

print("Highest rated movies:", maxMovies.title.values, " rating:", maxrate)

Highest rated movies: ['Godfather, The' 'Shawshank Redemption, The'] rating: 9.1

1.3.7 Task 2.7: Filter out rows and count specific features

From the major movies you filtered out in a previous task, find out * How many are comedies. *
How many are dramas * How many are both, comedies and dramas

Create new dataframed for each of these subsets.
Hint: you can combine broadcasting statements with a boolean AND: &.
Print the results, e.g.:

xxx.xxx major movies are comedies.

xxx.xxx major movies are dramas.

xxx.xxx major movies are both, comedies and dramas.

In [107]: # Task 2.7: Filter out rows and count specific features

movComedy = majorMovies[majorMovies.Comedy==1]

movDrama = majorMovies[majorMovies.Drama==1]

movBoth = majorMovies[(majorMovies.Comedy==1) & (majorMovies.Drama==1)]

print("%6d" % len(movComedy),"major movies are comedies.")

print("%6d" % len(movDrama),"major movies are dramas.")

print("%6d" % len(movBoth),"major movies are both, comedies and dramas.")

7

http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.idxmax.html

2553 major movies are comedies.

3370 major movies are dramas.

814 major movies are both, comedies and dramas.

1.3.8 Task 2.8: Compare ratings of different categories

Now we want to compare the ratings for comedies and dramas for major movies.
Compute the average rating, maximum rating, minimum rating, standard deviation, and the

median for each category. Hint: there is a function that does all of this in one line.
What do these numbers tell us? Provide an interpretation.

In [108]: # Task 2.8: Compare ratings of different categories

print('Comedy Ratings:')

print("Average\t", "%8.4f" % movComedy.rating.mean())

print("Min\t", "%8.4f" % movComedy.rating.min())

print("Max\t", "%8.4f" % movComedy.rating.max())

print("Std.Dev\t", "%8.4f" % movComedy.rating.std())

print("Median\t", "%8.4f" % movComedy.rating.median())

print()

print('Drama Ratings:')

print("Average\t", "%8.4f" % movDrama.rating.mean())

print("Min\t", "%8.4f" % movDrama.rating.min())

print("Max\t", "%8.4f" % movDrama.rating.max())

print("Std.Dev\t", "%8.4f" % movDrama.rating.std())

print("Median\t", "%8.4f" % movDrama.rating.median())

Comedy Ratings:

Average 6.1214

Min 1.7000

Max 8.7000

Std.Dev 1.1961

Median 6.2000

Drama Ratings:

Average 6.7496

Min 1.3000

Max 9.1000

Std.Dev 0.9910

Median 6.9000

Your Interpretation: Drama rating variation is smaller than comedy rating variation (see plots
at the end)

1.3.9 Task 2.9: Movies per year

Calcluate how many major movies were made in each year.
Print the number like this, sorted by year:

8

year number of movies

1902 xxx

1903 xxx

... ...

Use this data to render a line chart of the number of movies per year.

In [109]: # Task 2.9: Movies per year

mYear = movies_pd.groupby('year')['title'].count().reset_index(name='number of movies')

mYear.head(2)

Out[109]: year number of movies

0 1893 1

1 1894 9

In [110]: %matplotlib inline

create the plot here

import matplotlib.pyplot as plt

year = mYear['year']

nummov = mYear['number of movies']

plt.bar(year,nummov)

Out[110]: <Container object of 113 artists>

9

1.3.10 Task 2.10: Yearly average

Compute the average rating per year for all major movies.
Use the numbers you computed to plot a line chart. Plot the year on the x-axis and the average
rating on th y axis.

In [111]: # Task 2.10: Yearly average

avg_year=majorMovies.groupby('year')['rating'].agg(['mean'])

avg_year.plot()

Out[111]: <matplotlib.axes._subplots.AxesSubplot at 0x12f863ba8>

1.3.11 Task 2.11: Explore and Interpret

Are old movies better? How could you explain this? Are there differences between the rating of
major movies and all movies over time? Continue to explore and use plots to inform your answer.
Interesting measures to consider are the total number of votes per year, the average number of
votes for a movie in a particular year, etc.

TODO: your code and your interpretation

In [112]: # total number of votes for movies by year

avg_year=majorMovies.groupby('year')['votes'].agg(['sum'])

avg_year.plot()

Out[112]: <matplotlib.axes._subplots.AxesSubplot at 0x12f597f98>

10

In [113]: # average number of votes for movies by years

avg_year=majorMovies.groupby('year')['votes'].agg(['mean'])

avg_year.plot()

Out[113]: <matplotlib.axes._subplots.AxesSubplot at 0x12fc84710>

11

1.3.12 Note: Looks like the average number of votes are increasing by years, and the average
rating of the movies are decreasing.

In [114]: import matplotlib.pyplot as plt

In [115]: n, bins, patches = plt.hist(movComedy['rating'])

plt.show()

In [116]: n, bins, patches = plt.hist(movDrama['rating'])

plt.show()

12

13

	Introduction to Data Science - Homework 2 - Solutions
	Your Data
	Part 1: Analyzing Data The Hard Way
	Task 1.1: Read in the data
	Task 1.2: Calculate movie stats

	Part 2: Pandas
	Task 2.1: Loading data
	Task 2.2: Calculate the average rating
	Task 2.3: Compare the runtime
	Task 2.4: Filter out rows
	Task 2.5: Calculate the average rating for major movies
	Task 2.6: Find the highest rated major movie
	Task 2.7: Filter out rows and count specific features
	Task 2.8: Compare ratings of different categories
	Task 2.9: Movies per year
	Task 2.10: Yearly average
	Task 2.11: Explore and Interpret
	 Note: Looks like the average number of votes are increasing by years, and the average rating of the movies are decreasing.

