CENG 595 Distributed Data Processing and Analysis «Big Data»

MapReduce (2)

Spring 2017

Erdogan Dogdu

Çankaya University

Department of Computer Engineering

Slides adapted from Jimmy Lin's class https://lintool.github.io/bigdata-2016w/syllabus.html

MapReduce Algorithm Design

- How do you express everything in terms of m, r, c, p?
- Toward "design patterns"

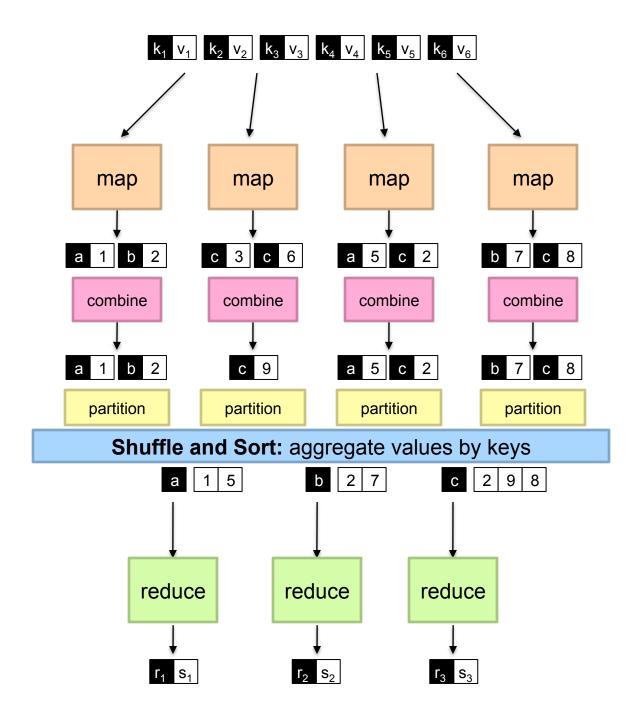
MapReduce: Recap

Programmers must specify:

map
$$(k, v) \rightarrow \langle k', v' \rangle^*$$

reduce $(k', v') \rightarrow \langle k', v' \rangle^*$

- All values with the same key are reduced together
- Optionally, also:
 - **partition** (k', number of partitions) \rightarrow partition for k'
 - Often a simple hash of the key, e.g., hash(k') mod n
 - Divides up key space for parallel reduce operations combine $(k', v') \rightarrow \langle k', v' \rangle^*$
 - Mini-reducers that run in memory after the map phase
 - Used as an optimization to reduce network traffic
- The execution framework handles everything else...



"Everything Else"

- The execution framework handles everything else...
 - Scheduling: assigns workers to map and reduce tasks
 - "Data distribution": moves processes to data
 - Synchronization: gathers, sorts, and shuffles intermediate data
 - Errors and faults: detects worker failures and restarts
- Limited control over data and execution flow
 - All algorithms must expressed in m, r, c, p
- You don't know:
 - Where mappers and reducers run
 - When a mapper or reducer begins or finishes
 - Which input a particular mapper is processing
 - Which intermediate key a particular reducer is processing

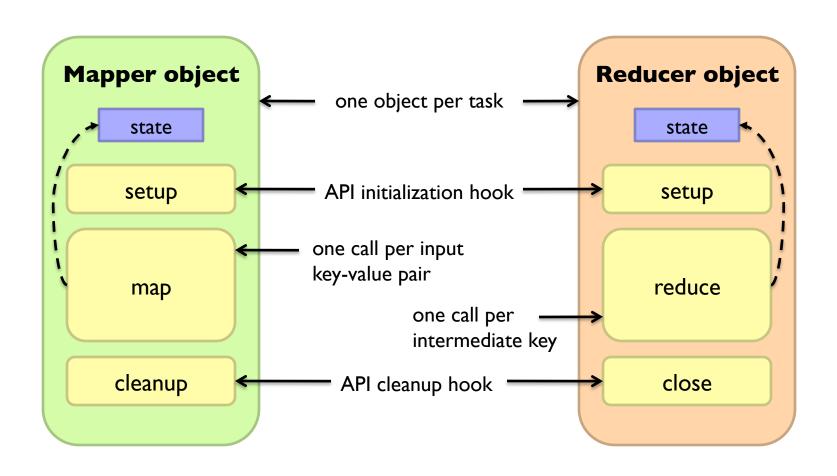
Tools for Synchronization

- Cleverly-constructed data structures
 - Bring partial results together
- Sort order of intermediate keys
 - Control order in which reducers process keys
- Partitioner
 - Control which reducer processes which keys
- Preserving state in mappers and reducers
 - Capture dependencies across multiple keys and values

MapReduce API*

- Mapper<K_{in},V_{in},K_{out},V_{out}>
 - void setup(Mapper.Context context)
 Called once at the beginning of the task
 - void map(K_{in} key, V_{in} value, Mapper.Context context)
 Called once for each key/value pair in the input split
 - void cleanup(Mapper.Context context)
 Called once at the end of the task
- Reducer<K_{in},V_{in},K_{out},V_{out}>/Combiner<K_{in},V_{in},K_{out},V_{out}>
 - void setup(Reducer.Context context)
 Called once at the start of the task
 - void reduce(K_{in} key, Iterable<V_{in}> values, Reducer.Context context)
 Called once for each key
 - void cleanup(Reducer.Context context)
 Called once at the end of the task

Preserving State



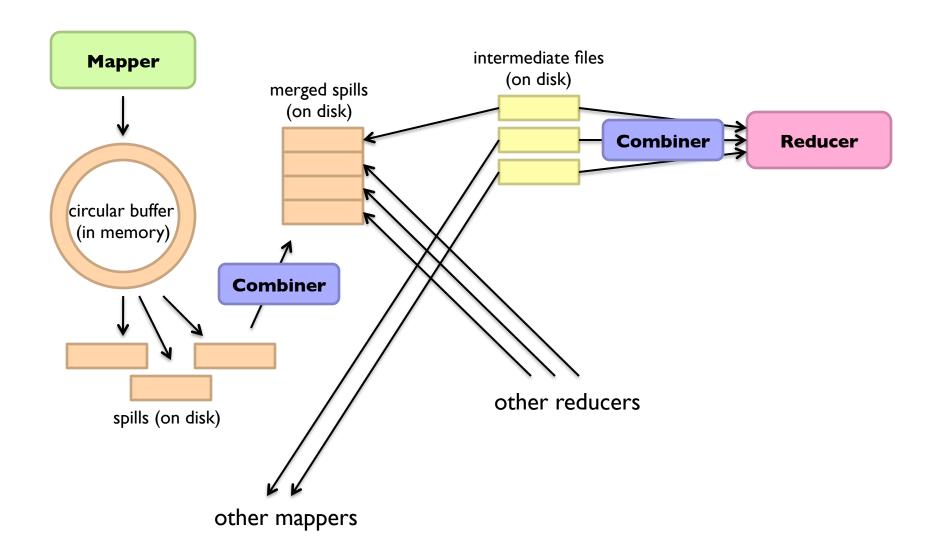
Scalable Hadoop Algorithms: Themes

- Avoid object creation
 - (Relatively) costly operation
 - Garbage collection
- Avoid buffering
 - Limited heap size
 - Works for small datasets, but won't scale!

Importance of Local Aggregation

- Ideal scaling characteristics:
 - Twice the data, twice the running time
 - Twice the resources, half the running time
- Why can't we achieve this?
 - Synchronization requires communication
 - Communication kills performance
- Thus... avoid communication!
 - Reduce intermediate data via local aggregation
 - Combiners can help

Shuffle and Sort



Word Count: Baseline

```
1: class Mapper
       method Map(docid a, doc d)
          for all term t \in \text{doc } d do
3:
               Emit(term t, count 1)
4:
1: class Reducer
       method Reduce(term t, counts [c_1, c_2, \ldots])
          sum \leftarrow 0
3:
          for all count c \in \text{counts } [c_1, c_2, \ldots] do
4:
              sum \leftarrow sum + c
5:
           Emit(term t, count s)
6:
```

What's the impact of combiners?

Word Count: Version I

```
1: class Mapper
2: method Map(docid a, doc d)
3: H \leftarrow new AssociativeArray
4: for all term t \in doc d do
5: H\{t\} \leftarrow H\{t\} + 1 \triangleright Tally counts for entire document
6: for all term t \in H do
7: Emit(term t, count H\{t\})
```

Are combiners still needed?

Word Count: Version 2

```
Key idea: Preserve state across input key-value pairs!
1: class Mapper
       method Initialize
2:
          H \leftarrow \text{new AssociativeArray}
3:
       method Map(docid a, doc d)
4:
          for all term t \in \text{doc } d do
5:
              H\{t\} \leftarrow H\{t\} + 1
                                                             \triangleright Tally counts across documents
6:
      method CLOSE
7:
          for all term t \in H do
8:
              EMIT(term t, count H\{t\})
9:
```

Are combiners still needed?

Design Pattern for Local Aggregation

- "In-mapper combining"
 - Fold the functionality of the combiner into the mapper by preserving state across multiple map calls
- Advantages
 - Speed
 - Why is this faster than actual combiners?
- Disadvantages
 - Explicit memory management required
 - Potential for order-dependent bugs

Combiner Design

- Combiners and reducers share same method signature
 - Sometimes, reducers can serve as combiners
 - Often, not...
- Remember: combiner are optional optimizations
 - Should not affect algorithm correctness
 - May be run 0, I, or multiple times
- Example: find average of integers associated with the same key

Computing the Mean: Version I

```
1: class Mapper
      method Map(string t, integer r)
          Emit(string t, integer r)
3:

    class Reducer.

      method Reduce(string t, integers [r_1, r_2, \ldots])
          sum \leftarrow 0
3:
          cnt \leftarrow 0
4:
          for all integer r \in \text{integers } [r_1, r_2, \ldots] do
5:
              sum \leftarrow sum + r
6:
             cnt \leftarrow cnt + 1
7:
          r_{avg} \leftarrow sum/cnt
8:
          Emit(string t, integer r_{ava})
9:
```

Why can't we use reducer as combiner?

Computing the Mean: Version 2

```
1: class Mapper
       method Map(string t, integer r)
           Emit(string t, integer r)
3:
1: class Combiner.
       method Combine(string t, integers [r_1, r_2, \ldots])
           sum \leftarrow 0
3:
    cnt \leftarrow 0
4:
          for all integer r \in \text{integers } [r_1, r_2, \ldots] do
5:
               sum \leftarrow sum + r
6:
               cnt \leftarrow cnt + 1
           EMIT(string t, pair (sum, cnt))

    Separate sum and count

1: class Reducer
       method Reduce(string t, pairs [(s_1, c_1), (s_2, c_2)...])
2:
           sum \leftarrow 0
3:
          cnt \leftarrow 0
4:
          for all pair (s, c) \in \text{pairs } [(s_1, c_1), (s_2, c_2) \dots] do
               sum \leftarrow sum + s
6:
               cnt \leftarrow cnt + c
7:
           r_{ava} \leftarrow sum/cnt
8:
           Emit(string t, integer r_{avq})
9:
                                                      Why doesn't this work?
```

Computing the Mean: Version 3

```
1: class Mapper
       method Map(string t, integer r)
2:
            Emit(string t, pair (r, 1))
3:
1: class Combiner.
       method Combine(string t, pairs [(s_1, c_1), (s_2, c_2)...])
           sum \leftarrow 0
3:
           cnt \leftarrow 0
4:
           for all pair (s, c) \in \text{pairs } [(s_1, c_1), (s_2, c_2)...] do
5:
                sum \leftarrow sum + s
6:
                cnt \leftarrow cnt + c
7:
           EMIT(string t, pair (sum, cnt))
8:
1: class Reducer
       method Reduce(string t, pairs [(s_1, c_1), (s_2, c_2) \dots])
            sum \leftarrow 0
3:
           cnt \leftarrow 0
4:
           for all pair (s, c) \in \text{pairs } [(s_1, c_1), (s_2, c_2) \dots] do
5:
                sum \leftarrow sum + s
6:
                cnt \leftarrow cnt + c
7:
           r_{avq} \leftarrow sum/cnt
8:
            Emit(string t, pair (r_{avq}, cnt))
9:
```


Computing the Mean: Version 4

```
1: class Mapper
2: method Initialize
3: S \leftarrow \text{new AssociativeArray}
4: C \leftarrow \text{new AssociativeArray}
5: method Map(string t, integer r)
6: S\{t\} \leftarrow S\{t\} + r
7: C\{t\} \leftarrow C\{t\} + 1
8: method Close
9: for all term t \in S do
10: Emit(term t, pair (S\{t\}, C\{t\}))
```

Are combiners still needed?

MapReduce API

Mapper<K_{in},V_{in},K_{out},V_{out}>
Combiner<K_{in},V_{in},K_{out},V_{out}>
Reducer<K_{in},V_{in},K_{out},V_{out}>

Algorithm Design: Running Example

- Term co-occurrence matrix for a text collection
 - M = N x N matrix (N = vocabulary size)
 - M_{ij} : number of times *i* and *j* co-occur in some context (for concreteness, let's say context = sentence)

• Why?

- Distributional profiles as a way of measuring semantic distance
- Semantic distance useful for many language processing tasks

MapReduce: Large Counting Problems

- Term co-occurrence matrix for a text collection
 - = specific instance of a large counting problem
 - A large event space (number of terms)
 - A large number of observations (the collection itself)
 - Goal: keep track of interesting statistics about the events
- Basic approach
 - Mappers generate partial counts
 - Reducers aggregate partial counts

How do we aggregate partial counts efficiently?

First Try: "Pairs"

- Each mapper takes a sentence:
 - Generate all co-occurring term pairs
 - For all pairs, emit $(a, b) \rightarrow count$
- Reducers sum up counts associated with these pairs
- Use combiners!

Pairs: Pseudo-Code

```
1: class Mapper
      method Map(docid a, doc d)
          for all term w \in \text{doc } d do
3:
              for all term u \in NEIGHBORS(w) do
4:
                  EMIT(pair (w, u), count 1) \triangleright Emit count for each co-occurrence
5:
1: class Reducer.
       method Reduce(pair p, counts [c_1, c_2, \ldots])
2:
           s \leftarrow 0
3:
          for all count c \in \text{counts } [c_1, c_2, \ldots] do
4:

⊳ Sum co-occurrence counts

              s \leftarrow s + c
5:
           EMIT(pair p, count s)
6:
```

"Pairs" Analysis

- Advantages
 - Easy to implement, easy to understand
- Disadvantages
 - Lots of pairs to sort and shuffle around (upper bound?)
 - Not many opportunities for combiners to work

Another Try: "Stripes"

Idea: group together pairs into an associative array

```
(a, b) \rightarrow 1

(a, c) \rightarrow 2

(a, d) \rightarrow 5

(a, e) \rightarrow 3

(a, f) \rightarrow 2

a \rightarrow \{ b: 1, c: 2, d: 5, e: 3, f: 2 \}
```

- Each mapper takes a sentence:
 - Generate all co-occurring term pairs
 - For each term, emit $a \rightarrow \{b: count_b, c: count_c, d: count_d ... \}$
- Reducers perform element-wise sum of associative arrays

```
\begin{array}{c} a \rightarrow \{ \text{ b: 1,} & \text{ d: 5, e: 3} \} \\ + & a \rightarrow \{ \text{ b: 1, c: 2, d: 2,} & \text{ f: 2} \} \\ \hline & a \rightarrow \{ \text{ b: 2, c: 2, d: 7, e: 3, f: 2} \} \\ & \qquad \qquad \text{Key idea: } \\ & \qquad \qquad \text{brings together partial results} \end{array}
```

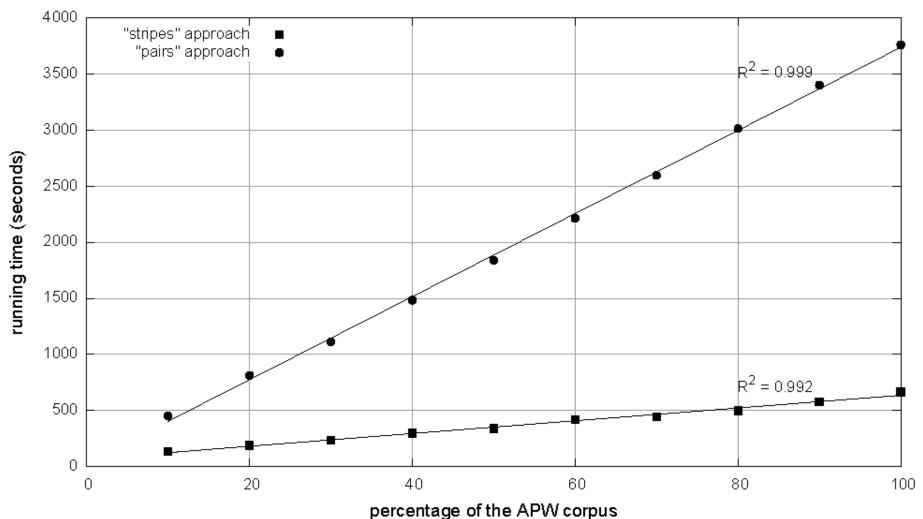
Stripes: Pseudo-Code

```
1: class Mapper
       method Map(docid a, doc d)
2:
           for all term w \in \operatorname{doc} d do
3:
               H \leftarrow \text{new AssociativeArray}
4:
              for all term u \in NEIGHBORS(w) do
5:
                   H\{u\} \leftarrow H\{u\} + 1
                                                           \triangleright Tally words co-occurring with w
6:
               Emit(Term w, Stripe H)
7:
  class Reducer.
       method Reduce(term w, stripes [H_1, H_2, H_3, \ldots])
2:
           H_f \leftarrow \text{new AssociativeArray}
3:
           for all stripe H \in \text{stripes } [H_1, H_2, H_3, \ldots] do
4:
                                                                            ▷ Element-wise sum
               SUM(H_f, H)
5:
           Emit(term w, stripe H_f)
6:
```

"Stripes" Analysis

- Advantages
 - Far less sorting and shuffling of key-value pairs
 - Can make better use of combiners
- Disadvantages
 - More difficult to implement
 - Underlying object more heavyweight
 - Fundamental limitation in terms of size of event space

Comparison of "pairs" vs. "stripes" for computing word co-occurrence matrices

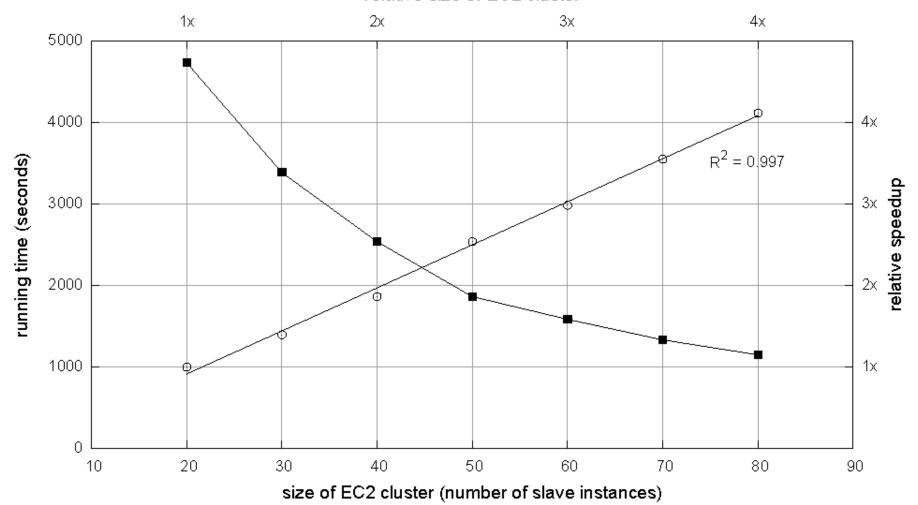


Cluster size: 38 cores

Data Source: Associated Press Worldstream (APW) of the English Gigaword Corpus (v3), which contains 2.27 million documents (1.8 GB compressed, 5.7 GB uncompressed)

Effect of cluster size on "stripes" algorithm

relative size of EC2 cluster



Stripes >> Pairs?

- Tradeoff: Developer code vs. framework
- Tradeoff: CPU vs. RAM vs. disk vs. network
- Number of key-value pairs
 - Sorting and shuffling data across the network
- Size of each key-value pair
 - De/serialization overhead
- Local aggregation
 - Opportunities to perform local aggregation varies
 - Combiners make a big difference
 - Combiners vs. in-mapper combining
- Watch out for load imbalance

Tradeoffs

o Pairs:

- Generates a lot more key-value pairs
- Less combining opportunities
- More sorting and shuffling
- Simple aggregation at reduce

Stripes:

- Generates fewer key-value pairs
- More opportunities for combining
- Less sorting and shuffling
- More complex (slower) aggregation at reduce

Where's the potential for load imbalance?

Relative Frequencies

O How do we estimate relative frequencies from counts?

$$f(B|A) = \frac{N(A,B)}{N(A)} = \frac{N(A,B)}{\sum_{B'} N(A,B')}$$

- Why do we want to do this?
- How do we do this with MapReduce?

f(B|A): "Stripes"

$$a \rightarrow \{b_1:3, b_2:12, b_3:7, b_4:1, \dots\}$$

- Easy!
 - One pass to compute (a, *)
 - Another pass to directly compute f(B|A)

f(B|A): "Pairs"

- What's the issue?
 - Computing relative frequencies requires marginal counts
 - But the marginal cannot be computed until you see all counts
 - Buffering is a bad idea!

Solution:

What if we could get the marginal count to arrive at the reducer first?

f(B|A): "Pairs"

 $(a, *) \rightarrow 32$ Reducer holds this value in memory

$$(a, b_1) \rightarrow 3$$

 $(a, b_2) \rightarrow 12$
 $(a, b_3) \rightarrow 7$
 $(a, b_4) \rightarrow 1$

(a, b₁)
$$\rightarrow$$
 3 / 32
(a, b₂) \rightarrow 12 / 32
(a, b₃) \rightarrow 7 / 32

$$(a, b_4) \rightarrow 1/32$$

• For this to work:

- Must emit extra (a, *) for every b_n in mapper
- Must make sure all a's get sent to same reducer (use partitioner)
- Must make sure (a, *) comes first (define sort order)
- Must hold state in reducer across different key-value pairs

"Order Inversion"

- Common design pattern:
 - Take advantage of sorted key order at reducer to sequence computations
 - Get the marginal counts to arrive at the reducer before the joint counts

Optimization:

Apply in-memory combining pattern to accumulate marginal counts

Synchronization: Pairs vs. Stripes

- Approach I: turn synchronization into an ordering problem
 - Sort keys into correct order of computation
 - Partition key space so that each reducer gets the appropriate set of partial results
 - Hold state in reducer across multiple key-value pairs to perform computation
 - Illustrated by the "pairs" approach
- Approach 2: construct data structures that bring partial results together
 - Each reducer receives all the data it needs to complete the computation
 - Illustrated by the "stripes" approach

Secondary Sorting

- MapReduce sorts input to reducers by key
 - Values may be arbitrarily ordered
- What if want to sort value also?
 - E.g., $k \rightarrow (v_1, r), (v_3, r), (v_4, r), (v_8, r)...$

Secondary Sorting: Solutions

Solution I:

- Buffer values in memory, then sort
- Why is this a bad idea?

Solution 2:

- "Value-to-key conversion" design pattern: form composite intermediate key, (k, v_l)
- Let execution framework do the sorting
- Preserve state across multiple key-value pairs to handle processing
- Anything else we need to do?

Recap: Tools for Synchronization

- Cleverly-constructed data structures
 - Bring data together
- Sort order of intermediate keys
 - Control order in which reducers process keys
- Partitioner
 - Control which reducer processes which keys
- Preserving state in mappers and reducers
 - Capture dependencies across multiple keys and values

Issues and Tradeoffs

- Tradeoff: Developer code vs. framework
- Tradeoff: CPU vs. RAM vs. disk vs. network
- Number of key-value pairs
 - Sorting and shuffling data across the network
- Size of each key-value pair
 - De/serialization overhead
- Local aggregation
 - Opportunities to perform local aggregation varies
 - Combiners make a big difference
 - Combiners vs. in-mapper combining
- Watch out for load imbalance

Debugging at Scale

- Works on small datasets, won't scale... why?
 - Memory management issues (buffering and object creation)
 - Too much intermediate data
 - Mangled input records
- Real-world data is messy!
 - There's no such thing as "consistent data"
 - Watch out for corner cases
 - Isolate unexpected behavior, bring local

