Introduction to XV6

CS202 Lab
Presenter: Sina Davanian

Instructor: Prof. Heng Yin



Presentation outline

* About me (Sina)

* Logistics

 What is XV6

* Hello World in XV6
e System calls in XV6



About me

* | have two names, but almost everybody calls me Sina
* | am one of Prof. Yin’s PHD students

* | work on system security
* A cool way of saying the same thing is that | am trying to hack into OSes ©

* | have one MS in security and privacy and one MS in Entrepreneurship
and Management

My hubbies are:
* Playing pool
* Dancing
* And hanging out with friends



Logistics

* The demo will be uploaded as a recorded video
* You just need to follow the same steps later to get the tasks running

* In addition to this presentation, a few other tutorials will be uploaded

* During the class, | suggest you just listen and ask questions (don’t try
the commands)

e Start playing with XV6 ASAP!
* It’s fun, you’ll enjoy it

e Don’t wait until last minute (for the entire quarter) to raise your
guestions



What is XV6?

* XV6 is a lightweight operating system
* It was designed in MIT for educational purposes
* It has an easy-to-understand structure

The bottom line is:
Understanding high level OS concepts using XV6 is straightforward



How can one run XV67?

e XV6 can be installed as a standalone OS (not recommended)
e XV6 can run in an emulated environment (recommended)

e QEMU is the emulator we use to run XV6



How can one run XV6?

 QEMU is a user program/system emulator

Examples:
* Running Arm on your Home PC { - - -}
* Running Windows on Linux
* Running XV6 on your Ubunto



Write a hello world program in XV6



High level steps

 Download XV6 source code
* Write a hello world program

* Include the program in the XV6 source code
* A way of uploading the program to XV6

* Compile and run XV6 with QEMU
* Run the hello world program inside XV6






Make a “hello world” system call



mkdir system call in XV6

Let’s see how system calls are already defined in xv6



Definition of a system call in the kernel [and

e SYSCALL([NAME]) in usys.S:
e SYSCALL(mkdir)

* This line translates to the following assembly:
globl mkdir;
mkdir:
movl SSYS_mkdir, %eax;
int ST_SYSCALL;

We have to define this constant



Definition of a system call in the kernel [and

ST _SYSCALL is a pointer to “syscall” function in syscall.c:

vold
syscall (void)
14
int num;
struct proc *Ccurproc = myproc():

num = curproc-»>tf-»eax;
B if (mum > & num < HELEM(svscalls) && syscalls[num]) {
curproc->tf-»eax = syscalls[num] () ; h sysca”s[SYS mkd|r]
} =l=e { -
cprintf{"%d %=: unknown sy=s call Fd\n",
curproc-»>pid, curproc->»name, nuam) ;
curproc—-»>tf-»eax = -_;

_}l } I



Definition of a system call in the kernel [and

* To make the call to syscalls[SYS _mkdir] working, we need two things:
* define SYS_mkdir

#define SYS mkdir 20

in syscall.h

e put the pointer to our system call in syscalls[SYS_mkdir] array element

7 Flstatic int (%*syscalls[]) (void) = {
[5Y5_fork] sys_fork,
[SY5 exit] sys_exict,
[5Y5_wait] sys_wailt,
[5Y5_pipe] sys_pipe,
[5Y5_read] sys_read,
[5Y5 kill] sys_kill,
[SY5 exec] Sys_exec,
[5Y5_fstat] sys_~fstat,
[5¥5 chdir] sys chdir, .
(s ove, in syscall.c
[5YS5_getpid] sys_gecpid,
[SY5 skrk] sys_sbrk,
[5Y5_sleep] sys_sleep,
[SYS_uptime] sys_uptime,
[SYS5_open] Sys_open,
[5Y5_write] sys_write,
[S5Y5 mknod] sys_mknod,
[5¥YS_unlink] =sys_unlink,
[SYS_link] sys_link,
[S5YS_mkdir] sys_mkdir,
[5Y5_close] sys_close,

_}r-




Definition of a system call in the kernel [and

* So now syscalls[SYS_mkdir] points to sys mkdir

* We need to define sys _mkdir function in the kernel land

* We put the function definition in “sysproc.c” file

* Since we define sys mkdir outside syscall.c, we need this line:

xtern int sys_mkdir (void)

in syscall.c



Definition of a system call in the kernel [and

» sys _mkdir skeleton in the kernel land (sysproc.c):

Sys_mkdir (void)
- *pa
ct inode ¥*ip
begin op():
-] if{axgstx (0, &path) < Il (ip = create(path, T DIE, . Yy = 0} {
end op():

retorn -1

- 1
ianlucjfat:ip}:
end op H

tn



Define the system call in the kernel land

* What if we want to put the function definition in “proc.c” file because
we can access many variables and kernel functions in proc.c? [you
need to put your code there for your assignment ;-)]

* We define a function in proc.c and call it in the sysproc.c definition



Defining “hello” system call in the kernel land

In “sysproc.c”

In *proc.c”

92 : 483

93 // BR 484

94  int e

95 sys hello(void) 487

96 { 488  //BR

< 489 void

97 hello() ' 490 hello(veid)

98 return 0; 491 {

99 } 492 F[I cprintf("\n\n Hello from the el space! \p\n"):
493 -}

100 // BR 494 //BR

101 |

Since hello is in a different file we need to mention this in “defs.h” header file

In “defs h”

104 / /PAGEBREAK : Zd
185 // proc.c

106 void exit(void);

107 int fork(void);

198 int growproc (int) ;

189 int kill(int);

119 void pinit(veid);

111 void procdump (veid) ;

112 void scheduler(veid) _ &ttribute ((noreturn));
113 void sched(void); !
114 void sleep(void*, struct spinlock*);

115 void userinit(void);

116 int wait(void);

117 void wakeup(void*)

118 void yield(veid);

119 void hello(veid); //BR



Defining “hello” system call in the kernel [and

In “user.h™

* Finally...
* We need to mention that “hello” is a library function

4 / system calls

5 int fork(veid);

6 int exit(void) attribute

7 int wait(void);

B int plpe(int=);

9 int write(int, void*, int};
10 int read(int, void*, int)
11 int close(int);

12 int kill({int);

13 int exec(char*, char**);

14 int open(char+, int);

15 int mknad[char*, short, shor
16 int unlink(char+);

17 int fstat[int fd, struct sta
18 int link{char*, char*|;

19 int mkdir(char*);

20 int chdir(char*|;

21 int dup(int);

22 int getpid|veid);

23 char* shrk{int];

24 int sleep|int);

25 int uptime|void);

26 int hello(void]; //BR
=






