
Introduction to XV6
CS202 Lab

Presenter: Sina Davanian

Instructor: Prof. Heng Yin

Presentation outline

• About me (Sina)

• Logistics

• What is XV6

• Hello World in XV6

• System calls in XV6

About me

• I have two names, but almost everybody calls me Sina

• I am one of Prof. Yin’s PHD students

• I work on system security
• A cool way of saying the same thing is that I am trying to hack into OSes ☺

• I have one MS in security and privacy and one MS in Entrepreneurship
and Management

• My hubbies are:
• Playing pool
• Dancing
• And hanging out with friends

Logistics

• The demo will be uploaded as a recorded video
• You just need to follow the same steps later to get the tasks running

• In addition to this presentation, a few other tutorials will be uploaded

• During the class, I suggest you just listen and ask questions (don’t try
the commands)

• Start playing with XV6 ASAP!
• It’s fun, you’ll enjoy it

• Don’t wait until last minute (for the entire quarter) to raise your
questions

What is XV6?

• XV6 is a lightweight operating system

• It was designed in MIT for educational purposes

• It has an easy-to-understand structure

The bottom line is:
Understanding high level OS concepts using XV6 is straightforward

How can one run XV6?

• XV6 can be installed as a standalone OS (not recommended)

• XV6 can run in an emulated environment (recommended)

• QEMU is the emulator we use to run XV6

How can one run XV6?

• QEMU is a user program/system emulator

Examples:

• Running Arm on your Home PC

• Running Windows on Linux

• Running XV6 on your Ubunto

Write a hello world program in XV6

High level steps

• Download XV6 source code

• Write a hello world program

• Include the program in the XV6 source code
• A way of uploading the program to XV6

• Compile and run XV6 with QEMU

• Run the hello world program inside XV6

Make a “hello world” system call

Let’s see how system calls are already defined in xv6

mkdir system call in XV6

Definition of a system call in the kernel land

• SYSCALL([NAME]) in usys.S:
• SYSCALL(mkdir)

• This line translates to the following assembly:

.globl mkdir;

mkdir:

movl $SYS_mkdir, %eax; //putting the system call number in eax

int $T_SYSCALL; //calling the system call handler in interrupt mode

We have to define this constant

Definition of a system call in the kernel land

• $T_SYSCALL is a pointer to “syscall” function in syscall.c:

syscalls[SYS_mkdir]

Definition of a system call in the kernel land

• To make the call to syscalls[SYS_mkdir] working, we need two things:
• define SYS_mkdir

in syscall.h

in syscall.c

• put the pointer to our system call in syscalls[SYS_mkdir] array element

Definition of a system call in the kernel land

• So now syscalls[SYS_mkdir] points to sys_mkdir

• We need to define sys_mkdir function in the kernel land

• We put the function definition in “sysproc.c” file

• Since we define sys_mkdir outside syscall.c, we need this line:

in syscall.c

Definition of a system call in the kernel land

• sys_mkdir skeleton in the kernel land (sysproc.c):

Define the system call in the kernel land

• What if we want to put the function definition in “proc.c” file because
we can access many variables and kernel functions in proc.c? [you
need to put your code there for your assignment ;-)]
• We define a function in proc.c and call it in the sysproc.c definition

Defining “hello” system call in the kernel land

Since hello is in a different file we need to mention this in “defs.h” header file

Defining “hello” system call in the kernel land

• Finally…

• We need to mention that “hello” is a library function

