
INFO411 Lecture 3 - Online Clustering

Jeremiah Deng

University of Otago

24/7/2018

Lecture 3 1 / 28

Overview

1 The Problem

2 Online Averaging

3 Competitive Learning
Basic principles
SOM
Neural Gas

4 Leader-Follower
The Idea
Examples

5 Recap

Lecture 3 2 / 28

References

Alpaydin, Chapter 12 (2nd / 3rd Ed.)
Hertz, Krogh & Palmer, Introduction to the Theory of Neural
Computation, Chapter 9
Duda, Hart & Stork, Pattern Classification, Section 10.11

Lecture 3 3 / 28

The Problem

The k-Means Algorithm

Given k, the k-means algorithm is implemented in the following
steps:

1 Partition data items into k non-empty subsets
2 Obtain the centroids as the centers (mean points) of the partitions.
3 Obtain new partitions: assign each data item to the cluster of the

nearest centroid.
4 Stop when no more new assignment is found; otherwise go back to

Step 2.
The algorithm may need to go through many iterations before it
terminates or converges.

Lecture 3 4 / 28

The Problem

Online Learning: Challenges

In traditional clustering,
I Cluster structure can be sensitive to small changes or noises in data.
I Clustering is mostly done in batch mode.

In online learning:
I Data may arrive incrementally but constantly
I Limited memory: data need to go through single-pass
I Limited processing time
I Evolving data: concept drifts may exist

What’s required:
I Incremental learning ability: learning data piece-by-piece.
I Stability: cluster structure not easily drifted
I Plasticity: being adaptive and possibly allowing new clusters

Lecture 3 5 / 28

Online Averaging

Online averaging: a bit of DIY

n← 0, avg0 ← 0
while true do
xn ← random()
avgn ← avgn−1 + γn(xn − avgn−1)
n← n+ 1

end while
Good experimental results can be obtained with very small γ values, or
γn = 1/np, p > 1.

In real-world scenarios with dynamic data environments does this
work? Let’s find out...

Lecture 3 6 / 28
Online Averaging

Optimization in Online k-Means
Another take on the reconstruction error for k-means clustering:

E({mi}ki=1|X) =
∑

t

∑

i

bt
i‖xt −mi‖2

where
bt

i =
{

1 if ‖xt −mi‖2 = minj ‖xt −mj‖
0 otherwise

In online learning, we approximate gradient descent with stochastic
gradient descent (SGD), doing a small update on clusters at each step.
The criterion function at step t is

Et({mi}ki=1|xt) =
∑

t

∑

i

bt
i‖xt −mi‖2

By SGD (see e.g. (Bottou & Benjio, 1995)), we have

∆mi = −η δE
t

δmi
= ηbt

i(xt −mi)

Lecture 3 7 / 28

Competitive Learning Basic principles

Competitive Learning

Competitive learning is a methodology based on neuroscience
research.
CL schemes

I Basic competitive learning
Fixed number of clusters
“Winner-takes-all”

I Soft competitive learning
Allows multiple winning neurons

I Leader-Follower clustering
Allows a variable number of neurons

Lecture 3 8 / 28

Competitive Learning Basic principles

Basic C.L. algorithm

a.k.a. ‘local k-means’

Pseudocode
1 Initialize weights {wi}, i = 1, 2, ..., k
2 Randomly select a pattern x
3 Find the winner neuron:
b = argmin‖x−wi‖

4 Update the winner neuron
∆wb = γ(x−wb)

5 Goto step 2 until no significant change in weights.

Lecture 3 9 / 28

Competitive Learning Basic principles

CL Characteristics

U Localized learning - good for online implementation
Local minimum problem

D Fixed number of neurons
D Slow adaptability to novelty

I Can you tell why?

Lecture 3 10 / 28
Competitive Learning Basic principles

CL: How to improve?

Instead of tuning the winning neuron alone, other neurons also
involved in adapting?

I More robustness in the ‘codebook’.
I Can introduce relationship between prototypes.
I However more time-consuming

Dealing with uneven winning frequencies: frequency-sensitive
FSCL, rival penalty RPCL
More adaptability? E.g.,

I growing and pruning,
I merging and splitting etc.

Can the learnt prototypes be useful for classification?
Parallel implementation?

Lecture 3 11 / 28

Competitive Learning SOM

Self-Organizing Maps

Kohonen (1982)
aka Self-organizing feature map (SOFM) or Kohonen map
Found thousands of applications, including:

I Speech recognition
I Image compression
I Bankruptcy prediction
I Telecommunication traffic monitoring
I Process control
I Web document indexing

Lecture 3 12 / 28

Competitive Learning SOM

The SOM Model

Introduces a topology for
prototype nodes (ordering,
neighbourhood)
Define a neighbourhood
function Ω(yi, yb) for prototype
indeces {yi}:

I Bubble: Ω(yi, yb) = 1 or 0
I Gaussian: centered at the

winner
I “Mexican hat”: lateral

inhibition
Nodes within the
neighbourhood of the winner
also get updated.

The nodes arranged in 2xD grids

The ‘Mexican hat’ neighbourhood

Lecture 3 13 / 28

Competitive Learning SOM

The SOM algorithm

Each adaptation tunes the winner (or “best matching unit” /
BMU) and its neighbours:

wi(t+ 1) = wi(t) + γ(t)Ω(yi, yb)(x−wi)
During the iterations

I Neighbourhood Ω(yi, yb) shrinks over time
I Learning rate γ(t) reduces over time

Can operate either incrementally, or in batch mode

Lecture 3 14 / 28
Competitive Learning SOM

Example 1: Packet monitoring

Mapping multi-dimensional packet data, one can use SOM to analyze
network traffic, monitor online traffic, or even visualize intrusions.

Luc Girardin, USENIX’99 workshop

Lecture 3 15 / 28

Competitive Learning SOM

Example 2: Microarray data classification

Covet et al., Molecular Classification of Cancer: Unsupervised Self-Organizing Map Analysis of Gene

Expression Microarray Data, Mol Cancer Ther, March 2003 2; 317

Lecture 3 16 / 28

Competitive Learning SOM

SOM: Characteristics

U Positives:
I Multi-dimension scaling (often onto 2-D)
I Probability density approximation: more

‘prototypes’ generated for regions of
higher probability densities.

I Topology preserving: any two close
input patterns should match to the same
neuron, or two neurons in a
neighbourhood on the map.

D Negatives:
I Rigid map topology
I Fixed number of units
I Limited online learning ability

DemoGNG results on “Fovea”

Lecture 3 17 / 28

Competitive Learning Neural Gas

Neural Gas

Martinetz (1993)
Topology constraint in SOM removed ,
Prototypes organised in the original space
Weight updating rule: ∆wi = γh(ki)(x−wi)

I ki: neighbour rank of the prototypes
I E.g. for winner, ki = 1; second winner ki = 2 etc.
I h(ki(x; w)) = e−ki(x;w)/λ

Neighbour ranking is time-consuming /
Fixed number of neurons /

Lecture 3 18 / 28
Leader-Follower The Idea

Leader-Follower

Model itself is incremental; allows adaptive clustering without a
known number of clusters
Needs a similarity threshold (vigilance) or a distance threshold T
This threshold implicitly controls the number of prototypes
generated

Procedure:
1 Take initial inputs as prototypes (leaders)
2 Modify existing prototypes with new input if they are similar

(followers)
3 Otherwise add the new input as a new prototype
4 Repeat Steps 2-3 on new arriving data

Lecture 3 19 / 28

Leader-Follower The Idea

Leader-Follower Algorithms

Pseudocode
Assign first input to node 1
w1 ← x
Number of nodes set as 1
K = 1
while more data are available

accept new x
b← arg mini‖x−wi‖ # find best match unit
if ‖x-wb‖ < T # if close enough, update BMU

modify wi

else # otherwise insert as new
K ← K + 1
wK ← x

endif

Lecture 3 20 / 28

Leader-Follower Examples

ART algorithms

An implementation of L.F. algorithm
Carpenter & Grossberg (1987). Adaptive resonance theory is to
model how biological neural networks coping with novel patterns.
Uses a vigilance parameter
A family

I ART1 for binary patterns
I ART2/ART3 for analog patterns
I ARTMAP as a supervised model
I Fuzzy ARTMAP as a fuzzy variation

Lecture 3 21 / 28

Leader-Follower Examples

Example: Online EM for background modeling

Problem: monitor pixel changes in a video frame and separate
foreground from background
Solution (Stauffer & Grimson CVPR’99):

I Probabilistic model for separating the background and foreground.
I Adaptive mixture of multi-modal Gaussians per pixel.
I Method for updating the Gaussian parameters.
I Heuristic for determining the background.

Lecture 3 22 / 28
Leader-Follower Examples

The Adaptive MoG Model

Each pixel is modelled by a mixture of K Gaussian distributions:

η(x; µk,Σk) = 1
(2π)D/2|Σk|1/2 e

− 1
2 (x−µk)T Σ−1

k
(x−µk)

Σk = σkI

Look for Gaussians winning the most with the least variance;
order models by wi/σi

The first B distributions are used as a model of the background (T
is a threshold):

B = argminb(
b∑

j=1
wj > T)

Lecture 3 23 / 28

Leader-Follower Examples

Learning the MoG

If Model k matched to the current pixel value at time t, update its
weight (α is a learning rate):

wk,t = (1− α)wk,t−1 + α

Updating the matched model:

µt = (1− ρ)µt−1 + ρXt

σ2
t = (1− ρ)σ2

t−1 + ρ(Xt − µt)T (Xt − µt)

where ρ = αη(Xt|µk, σk)

Lecture 3 24 / 28

Leader-Follower Examples

Stream Clustering

Mining massive, unbounded sequences of
data objects of rapid but often
changeable rates.
Example applications: Sensor networks,
smart homes, Internet traffic monitoring,
ATM transactions ...
Approaches: partition (ClusStream),
grid-based (DStream), density-based
(DenStream)
Tools: MOA, RapidMiner etc.
Challenges: concept drift

Lecture 3 25 / 28

Leader-Follower Examples

Mini-batch k-means

Sculley, Web-Scale K-Means Clustering, WWW’10
Mini-batches tend to have lower stochastic noise than individual
examples in SGD

Lecture 3 26 / 28
Recap

Recap

The online averaging problem
Competitive learning: online k-means
Other online algorithms
Leader-follower
Density-based

, Your algorithm?

Lecture 3 27 / 28

Recap

Further Readings

ER3: Kaur et al., Stream clustering algorithms: a primer, in Big
Data in Complex Systems, 105-145, 2015.
ER4: Lühr and Mihai Lazarescu. 2009. Incremental clustering of
dynamic data streams using connectivity based representative
points. Data Knowl. Eng. 68.
Silva et al., Data stream clustering: A survey, ACM Computing
Surveys, 46:1, DOI: 10.1145/2522968.2522981.
Cao et al., Density-based clustering over an evolving data stream
with noise, SDM’06, DOI: 10.1137/1.9781611972764.29.
DemoGNG, URL http://www.demogng.de

Lecture 3 28 / 28

