INFO411 Lecture 3 - Online Clustering

Jeremiah Deng

University of Otago

24/7/2018

Overview

- 1 The Problem
- 2 Online Averaging
- 3 Competitive Learning
 - Basic principles
 - SOM
 - Neural Gas
- 4 Leader-Follower
 - The Idea
 - Examples
- 6 Recap

References

- Alpaydin, Chapter 12 (2nd / 3rd Ed.)
- Hertz, Krogh & Palmer, Introduction to the Theory of Neural Computation, Chapter 9
- Duda, Hart & Stork, Pattern Classification, Section 10.11

The k-Means Algorithm

- Given k, the k-means algorithm is implemented in the following steps:
 - \bullet Partition data items into k non-empty subsets
 - ② Obtain the centroids as the centers (mean points) of the partitions.
 - **3** Obtain new partitions: assign each data item to the cluster of the nearest centroid.
 - Stop when no more new assignment is found; otherwise go back to Step 2.
- The algorithm may need to go through many iterations before it terminates or converges.

Lecture 3 3 / 28 Lecture 3 4 / 28

Online Learning: Challenges

Online averaging: a bit of DIY

- In traditional clustering,
 - Cluster structure can be sensitive to small changes or noises in data.
 - ▶ Clustering is mostly done in batch mode.
- In online learning:
 - ▶ Data may arrive incrementally but constantly
 - ▶ Limited memory: data need to go through single-pass
 - ▶ Limited processing time
 - ▶ Evolving data: concept drifts may exist
- What's required:
 - ▶ Incremental learning ability: learning data piece-by-piece.
 - ▶ Stability: cluster structure not easily drifted
 - ▶ Plasticity: being adaptive and possibly allowing new clusters

$$n \leftarrow 0, \operatorname{avg}_0 \leftarrow 0$$

while true do
 $x_n \leftarrow \operatorname{random}()$
 $\operatorname{avg}_n \leftarrow \operatorname{avg}_{n-1} + \gamma_n(x_n - \operatorname{avg}_{n-1})$
 $n \leftarrow n+1$
end while

Good experimental results can be obtained with very small γ values, or $\gamma_n = 1/n^p, \ p > 1.$

In real-world scenarios with dynamic data environments does this work? Let's find out...

Lecture 3	5 / 28		Lect		6 / 28
Online Averaging		Compet	titive Learning	Basic principles	

Optimization in Online k-Means

Another take on the reconstruction error for k-means clustering:

$$E(\{\mathbf{m}_i\}_{i=1}^k | \mathcal{X}) = \sum_t \sum_i b_i^t ||\mathbf{x}^t - \mathbf{m}_i||^2$$

where

$$b_i^t = \begin{cases} 1 & \text{if } \|\mathbf{x}^t - \mathbf{m}_i\|^2 = \min_j \|\mathbf{x}^t - \mathbf{m}_j\| \\ 0 & \text{otherwise} \end{cases}$$

In online learning, we approximate gradient descent with stochastic gradient descent (SGD), doing a small update on clusters at each step. The criterion function at step t is

$$E^{t}(\{\mathbf{m}_{i}\}_{i=1}^{k}|\mathbf{x}^{t}) = \sum_{t} \sum_{i} b_{i}^{t} \|\mathbf{x}^{t} - \mathbf{m}_{i}\|^{2}$$

By SGD (see e.g. (Bottou & Benjio, 1995)), we have

$$\Delta \mathbf{m}_i = -\eta \frac{\delta \mathbf{E}^t}{\delta \mathbf{m}_i} = \eta b_i^t (\mathbf{x}^t - \mathbf{m}_i)$$

Competitive Learning

- Competitive learning is a methodology based on neuroscience research.
- CL schemes
 - ▶ Basic competitive learning
 - Fixed number of clusters
 - "Winner-takes-all"
 - ▶ Soft competitive learning
 - Allows multiple winning neurons
 - ▶ Leader-Follower clustering
 - Allows a variable number of neurons

ecture 3 7 / 28 Lecture 3 8 / 28

Basic C.L. algorithm

CL Characteristics

• a.k.a. 'local k-means'

Pseudocode

- Initialize weights $\{\mathbf{w}_i\}, i = 1, 2, ..., k$
- 2 Randomly select a pattern x
- § Find the winner neuron: $b = \operatorname{argmin} \|\mathbf{x} \mathbf{w}_i\|$
- Update the winner neuron $\Delta \mathbf{w}_b = \gamma (\mathbf{x} \mathbf{w}_b)$
- 6 Goto step 2 until no significant change in weights.

- Localized learning good for online implementation
 - Local minimum problem
- Fixed number of neurons
- Slow adaptability to novelty
 - ► Can you tell why?

Lecture 3			9 / 28		Lectu	ıre 3	10 / 28	
	Competitive Learning Basic principles				Com	petitive Learning	SOM	
	CL: How to improve?			Self-Organizing Ma	aps			

- Instead of tuning the winning neuron alone, other neurons also involved in adapting?
 - ► More robustness in the 'codebook'.
 - ▶ Can introduce relationship between prototypes.
 - ► However more time-consuming
- Dealing with uneven winning frequencies: frequency-sensitive FSCL, rival penalty RPCL
- More adaptability? E.g.,
 - growing and pruning,
 - ▶ merging and splitting etc.
- Can the learnt prototypes be useful for classification?
- Parallel implementation?

- Kohonen (1982)
- aka Self-organizing feature map (SOFM) or Kohonen map
- Found thousands of applications, including:
 - ► Speech recognition
 - ► Image compression
 - ▶ Bankruptcy prediction
 - ➤ Telecommunication traffic monitoring
 - Process control
 - ► Web document indexing

Lecture 3 11 / 28 Lecture 3 12 / 28

The SOM Model

- Introduces a topology for prototype nodes (ordering, neighbourhood)
- Define a neighbourhood function $\Omega(y_i, y_b)$ for prototype indexes $\{y_i\}$:
 - ▶ Bubble: $\Omega(y_i, y_b) = 1$ or 0
 - ► Gaussian: centered at the winner
 - "Mexican hat": lateral inhibition
- Nodes within the neighbourhood of the winner also get updated.

The nodes arranged in 2xD grids

The 'Mexican hat' neighbourhood

The SOM algorithm

• Each adaptation tunes the winner (or "best matching unit" / BMU) and its neighbours:

$$\mathbf{w}_i(t+1) = \mathbf{w}_i(t) + \gamma(t)\Omega(y_i, y_b)(\mathbf{x} - \mathbf{w}_i)$$

- During the iterations
 - ▶ Neighbourhood $\Omega(y_i, y_b)$ shrinks over time
 - ▶ Learning rate $\gamma(t)$ reduces over time
- Can operate either incrementally, or in batch mode

Lecture 3 13 / 28

Competitive Learning SOM Lecture 3 14 / 28

Competitive Learning SOM

Example 1: Packet monitoring

Mapping multi-dimensional packet data, one can use SOM to analyze network traffic, monitor online traffic, or even visualize intrusions.

Luc Girardin, USENIX'99 workshop

Example 2: Microarray data classification

 $Covet\ et\ al.,\ Molecular\ Classification\ of\ Cancer:\ Unsupervised\ Self-Organizing\ Map\ Analysis\ of\ Gene$

Expression Microarray Data, Mol Cancer Ther, March 2003 2; 317

cture 3 Lecture 3 16 / 28

Competitive Learning SOM Competitive Learning Neural Gas

SOM: Characteristics

Neural Gas

Positives:

- ► Multi-dimension scaling (often onto 2-D)
- ▶ Probability density approximation: more 'prototypes' generated for regions of higher probability densities.
- ► Topology preserving: any two close input patterns should match to the same neuron, or two neurons in a neighbourhood on the map.

DemoGNG results on "Fovea"

Negatives:

- ► Rigid map topology
- ▶ Fixed number of units
- ▶ Limited online learning ability

- Martinetz (1993)
- Topology constraint in SOM removed ©
- Prototypes organised in the original space
- Weight updating rule: $\Delta w_i = \gamma h(k_i)(\mathbf{x} \mathbf{w}_i)$
 - \triangleright k_i : neighbour rank of the prototypes
 - ▶ E.g. for winner, $k_i = 1$; second winner $k_i = 2$ etc.
 - $h(k_i(\mathbf{x};\mathbf{w})) = e^{-k_i(\mathbf{x};\mathbf{w})/\lambda}$
- Neighbour ranking is time-consuming ©
- Fixed number of neurons ②

Leader-Follower The Idea Leader-Follower The Idea	Lect	ure 3	17 / 28	Lectu	re 3	18 / 28
			3,73			/

Leader-Follower

- Model itself is incremental; allows adaptive clustering without a known number of clusters
- \bullet Needs a similarity threshold (vigilance) or a distance threshold T
- This threshold implicitly controls the number of prototypes generated
- Procedure:
 - Take initial inputs as prototypes (leaders)
 - 2 Modify existing prototypes with new input if they are similar (followers)
 - **3** Otherwise add the new input as a new prototype
 - Repeat Steps 2-3 on new arriving data

Leader-Follower Algorithms

Pseudocode

```
# Assign first input to node 1
\mathbf{w}_1 \leftarrow \mathbf{x}
# Number of nodes set as 1
K = 1
while more data are available
   accept new \mathbf{x}
   b \leftarrow \arg\min_{i} \|\mathbf{x} - \mathbf{w}_{i}\| \# \text{ find best match unit}
   if \|\mathbf{x} - \mathbf{w}_b\| < T
                                    # if close enough, update BMU
      modify \mathbf{w}_i
   else # otherwise insert as new
      K \leftarrow K + 1
      \mathbf{w}_K \leftarrow \mathbf{x}
   endif
```

20 / 28 19 / 28

ART algorithms

Example: Online EM for background modeling

- An implementation of L.F. algorithm
- Carpenter & Grossberg (1987). Adaptive resonance theory is to model how biological neural networks coping with novel patterns.
- Uses a vigilance parameter
- A family
 - ► ART1 for binary patterns
 - ► ART2/ART3 for analog patterns
 - ► ARTMAP as a supervised model
 - ▶ Fuzzy ARTMAP as a fuzzy variation

- Problem: monitor pixel changes in a video frame and separate foreground from background
- Solution (Stauffer & Grimson CVPR'99):
 - ▶ Probabilistic model for separating the background and foreground.
 - ► Adaptive mixture of multi-modal Gaussians per pixel.
 - ▶ Method for updating the Gaussian parameters.
 - ▶ Heuristic for determining the background.

Lecture 3		21 / 28	Lecture 3		22 / 28	
Leader-Follower	Examples			Leader-Follower	Examples	

The Adaptive MoG Model

ullet Each pixel is modelled by a mixture of K Gaussian distributions:

$$\eta(\mathbf{x}; \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) = \frac{1}{(2\pi)^{D/2} |\boldsymbol{\Sigma}_k|^{1/2}} e^{-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu}_k)^T \boldsymbol{\Sigma}_k^{-1} (\mathbf{x} - \boldsymbol{\mu}_k)}$$
$$\boldsymbol{\Sigma}_k = \sigma_k \mathbf{I}$$

- Look for Gaussians winning the most with the least variance; order models by w_i/σ_i
- The first B distributions are used as a model of the background (T is a threshold):

$$B = \operatorname{argmin}_b(\sum_{i=1}^b w_i > T)$$

Learning the MoG

• If Model k matched to the current pixel value at time t, update its weight (α is a learning rate):

$$w_{k,t} = (1 - \alpha)w_{k,t-1} + \alpha$$

• Updating the matched model:

$$\mu_t = (1 - \rho)\mu_{t-1} + \rho X_t$$

$$\sigma_t^2 = (1 - \rho)\sigma_{t-1}^2 + \rho (X_t - \mu_t)^T (X_t - \mu_t)$$
where $\rho = \alpha \eta (X_t | \mu_t, \sigma_t)$

cture 3 Lecture 3 Lecture 3

Leader-Follower Examples Leader-Follower Examples

Stream Clustering

- Mining massive, unbounded sequences of data objects of rapid but often changeable rates.
- Example applications: Sensor networks, smart homes, Internet traffic monitoring, ATM transactions ...
- Approaches: partition (ClusStream), grid-based (DStream), density-based (DenStream)
- Tools: MOA, RapidMiner etc.
- Challenges: concept drift

Mini-batch k-means

- Sculley, Web-Scale K-Means Clustering, WWW'10
- Mini-batches tend to have lower stochastic noise than individual examples in SGD

Algorithm 1 Mini-batch k-Means.
1: Given: k , mini-batch size b , iterations t , data set X
2: Initialize each $\mathbf{c} \in C$ with an \mathbf{x} picked randomly from X
$3: \mathbf{v} \leftarrow 0$
4: for $i=1$ to t do
5: $M \leftarrow b$ examples picked randomly from X
6: for $\mathbf{x} \in M$ do
7: $\mathbf{d}[\mathbf{x}] \leftarrow f(C, \mathbf{x})$ // Cache the center nearest to \mathbf{x}
8: end for
9: for $\mathbf{x} \in M$ do
10: $\mathbf{c} \leftarrow \mathbf{d}[\mathbf{x}]$ // Get cached center for this \mathbf{x}
11: $\mathbf{v}[\mathbf{c}] \leftarrow \mathbf{v}[\mathbf{c}] + 1$ // Update per-center counts
12: $\eta \leftarrow \frac{1}{\mathbf{v}[\mathbf{c}]}$ // Get per-center learning rate
13: $\mathbf{c} \leftarrow (1-\eta)\mathbf{c} + \eta\mathbf{x}$ // Take gradient step
14: end for
15: end for

 Lecture 3
 25 / 28
 Lecture 3
 26 / 28

 Recap
 Recap

Recap

- The online averaging problem
- Competitive learning: online k-means
- Other online algorithms
- Leader-follower
- Density-based
- © Your algorithm?

Further Readings

- ER3: Kaur et al., Stream clustering algorithms: a primer, in *Big Data in Complex Systems*, 105-145, 2015.
- ER4: Lühr and Mihai Lazarescu. 2009. Incremental clustering of dynamic data streams using connectivity based representative points. *Data Knowl. Eng.* 68.
- Silva et al., Data stream clustering: A survey, ACM Computing Surveys, 46:1, DOI: 10.1145/2522968.2522981.
- Cao et al., Density-based clustering over an evolving data stream with noise, SDM'06, DOI: 10.1137/1.9781611972764.29.
- DemoGNG, URL http://www.demogng.de

Lecture 3 Lecture 3 Lecture 3 28 / 28