Overview

Q The Problem

INFO411 Lecture 3 - Online Clustering © Online Averaging
© Competitive Learning
Jeremiah Deng @ Basic principles
e SOM
University of Otago @ Neural Gas
24/7/2018 @ Lcader-Follower
@ The Idea
e Examples
© Recap
1/28 Lecture 3 2 /28
B
References The k-Means Algorithm

e Given k, the k-means algorithm is implemented in the following
steps:

o Alpaydin, Chapter 12 (2nd / 3rd Ed.) @ Partition data items into k£ non-empty subsets
@ Obtain the centroids as the centers (mean points) of the partitions.

e Hertz, Krc?gh & Palmer, Introduction to the Theory of Neural @ Obtain new partitions: assign each data item to the cluster of the
Computation, Chapter 9 nearest centroid.

e Duda, Hart & Stork, Pattern Classification, Section 10.11 @ Stop when no more new assignment is found; otherwise go back to
Step 2.

@ The algorithm may need to go through many iterations before it
terminates or converges.

3 /22 T T R 4/ 28

The Problem

Online Learning: Challenges

e In traditional clustering,
» Cluster structure can be sensitive to small changes or noises in data.
» Clustering is mostly done in batch mode.

e In online learning:

Data may arrive incrementally but constantly
Limited memory: data need to go through single-pass
Limited processing time

Evolving data: concept drifts may exist

e What’s required:

v vy

v

» Incremental learning ability: learning data piece-by-piece.
» Stability: cluster structure not easily drifted
» Plasticity: being adaptive and possibly allowing new clusters

Lecture 3

Online Averaging

Optimization in Online k-Means

Another take on the reconstruction error for k-means clustering:

B({mg}i |X) = 30> bi|x" — my|?

bt:{

In online learning, we approximate gradient descent with stochastic
gradient descent (SGD), doing a small update on clusters at each step.
The criterion function at step t is

E*({mi}iy[x") =D > bfllx" —my?
t

By SGD (see e.g. (Bottou & Benjio, 1995)), we have

B SE?
ném

where
1 if |x! — my[|? = min; [|x! — m; ||
0 otherwise

Ami = nbg(xt — IIIZ)

)

7/ 28

5/ 28

Online Averaging

Online averaging: a bit of DIY

n < 0,avgy < 0

while true do
xyp random()
avg, < avg, 1 + yn(zp —avg, 1)
n<n+1l

end while

Good experimental results can be obtained with very small v values, or
Yo =1/nP, p > 1.

In real-world scenarios with dynamic data environments does this
work? Let’s find out...

Lecture 3 6 /28

Competitive Learning BESEYSTeNSdttal I

Competitive Learning

e Competitive learning is a methodology based on neuroscience
research.
e CL schemes
» Basic competitive learning

o Fixed number of clusters
o “Winner-takes-all”

» Soft competitive learning
o Allows multiple winning neurons
» Leader-Follower clustering

o Allows a variable number of neurons

8 /28

[@7e3esyoYcintnb M ustist-all Basic principles

Basic C.L. algorithm

o a.k.a. ‘local k-means’

Pseudocode
Q Initialize weights {w;},i =1,2,...,k
© Randomly select a pattern x
@ Find the winner neuron:
b = argmin||x — w,||
@ Update the winner neuron
Awp = y(x — Wp)

@ Goto step 2 until no significant change in weights.

Lecture 3

Competitive Learning RESERTeIstaeiol (5]

CL: How to improve?

e Instead of tuning the winning neuron alone, other neurons also

involved in adapting?
» More robustness in the ‘codebook’.
» Can introduce relationship between prototypes.
» However more time-consuming

@ Dealing with uneven winning frequencies: frequency-sensitive

FSCL, rival penalty RPCL
e More adaptability? E.g.,
» growing and pruning,
» merging and splitting etc.

e Can the learnt prototypes be useful for classification?

e Parallel implementation?

Competitive Learning BESEYSTENSatleal I

CL Characteristics

I's Localized learning - good for online implementation

e Local minimum problem

I'2 Fixed number of neurons
I'2 Slow adaptability to novelty
» Can you tell why?

9/ 28 Lecture 3 10 / 28
Competitive Learning
Self-Organizing Maps
e Kohonen (1982)
e aka Self-organizing feature map (SOFM) or Kohonen map
e Found thousands of applications, including:
» Speech recognition
» Image compression
» Bankruptcy prediction
» Telecommunication traffic monitoring
» Process control
» Web document indexing
11 / 28 12 / 28

SOM
The SOM Model

e Introduces a topology for
prototype nodes (ordering,
neighbourhood)

@ Define a neighbourhood
function Q(y;, yp) for prototype
indeces {y;}:

» Bubble: Q(y;,y) =1o0r0

» Gaussian: centered at the
winner

> “Mexican hat”: lateral
inhibition

e Nodes within the
neighbourhood of the winner
also get updated.

Lecture 3

Competitive Learning S0V

Example 1: Packet monitoring

SOM
The SOM algorithm

. e Each adaptation tunes the winner (or “best matching unit” /
Neurons a BMU) and its neighbours:

wi(t+1) = wi(t) +v(t)Qyi, yo) (x — wi)
@ During the iterations

» Neighbourhood Q(y;, yp) shrinks over time
» Learning rate «y(t) reduces over time

e Can operate either incrementally, or in batch mode

The ‘Mexican hat’ neighbourhood

13 / 28 Lecture 3
Competitive Learning RESI0Y|

Example 2: Microarray data classification

Mapping multi-dimensional packet data, one can use SOM to analyze

network traffic, monitor online traffic, or even visualize intrusions.

17

Luc Girardin, USENIX’99 workshop

15 7 22 T N

14 / 28

Covet et al., Molecular Classification of Cancer: Unsupervised Self-Organizing Map Analysis of Gene

16 / 28

Competitive Learning S0} Competitive Learning BINEIEINET

SOM: Characteristics Neural Gas

IS Positives:

» Multi-dimension scaling (often onto 2-D) e Martinetz (1993)
» Probability density approximation: more o Topology constraint in SOM removed ©
‘prototypes’ generated for regions of)) o
higher probability densities. e Prototypes organised in the original space
» Topology preserving: any two close e Weight updating rule: Aw; = yh(k;)(x — w;)
input patterns should match to the same » k;: neighbour rank of the prototypes
neuron, or two neurons in a » E.g. for winner, k; = 1; second winner k; = 2 etc.
neighbourhood on the map. > h(ki(x;w)) = e FiGsw)/A
Iz Negatives: e Neighbour ranking is time-consuming @
» Rigid map topology Fi ¢ o
> FiXed number Of units DemoGNG results on “Fovea” ° IXed number Ol nneurons
» Limited online learning ability
Lecture 3 17 / 28 Lecture 3 18 / 28
IFEEVCIS BNV The Idea IFCEVCIS RNV The Idea
Leader-Follower Leader-Follower Algorithms
Pseudocode
e Model itself is incremental; allows adaptive clustering without a 4 Assign first input to node 1
known number of clusters Wi — X
e Needs a similarity threshold (vigilance) or a distance threshold T # Number of nodes set as 1
e This threshold implicitly controls the number of prototypes K =1
generated while more data are available
accept new x
e Procedure: b < arg min;||x — w;|| # find best match unit
@ Take initial inputs as prototypes (leaders) if [|[x-wy| < T # if close enough, update BMU
@ Modify existing prototypes with new input if they are similar modify w;
(followers) else # otherwise insert as new
© Otherwise add the new input as a new prototype K< K+1
© Repeat Steps 2-3 on new arriving data
WK < X
endif

15 722 T N 20 75

Leader-Follower N3N EF0ie) (5] IRCEYS IS MDY Sall Examples

ART algorithms Example: Online EM for background modeling
@ An implementation of L.F. algorithm
o Carpenter & Grossberg (1987). Adaptive resonance theory is to e Problem: monitor pixel changes in a video frame and separate
model how biological neural networks coping with novel patterns. foreground from background

e Solution (Stauffer & Grimson CVPR’99):

Uses a vigilance parameter

v

Probabilistic model for separating the background and foreground.

o A family) » Adaptive mixture of multi-modal Gaussians per pixel.
> ARTI for binary patterns » Method for updating the Gaussian parameters.
> ART2/ART3 for analog patterns » Heuristic for determining the background.
» ARTMAP as a supervised model
» Fuzzy ARTMARP as a fuzzy variation
Lecture 3 21 / 28 Lecture 3 22 / 28
Leader-Follower BR3NEhieiol] IFEEVCIS NS IGV I EN Examples
The Adaptive MoG Model Learning the MoG

e Each pixel is modelled by a mixture of K Gaussian distributions:
e If Model k matched to the current pixel value at time ¢, update its

1 1 Ts—1 . . . _
. _ L x—p)T (x—pp) weight (o is a learning rate):
0 b Be) = (27T)D/2|2k|1/26 e ght (&)

Wit = (1 —)wg -1 +
Y=ol

e Look for Gaussians winning the most with the least variance; e Updating the matched model:

order models by w;/o;

e The first B distributions are used as a model of the background (7'
is a threshold): 02 =(1—p)o |+ p(X; —)T (X — 1)

pe = (1= p)—1 + pXe

b
B = argminb(z w; >T) where p = an(Xi|px, ox)
j=1

23/ 2¢ T T P 7

IEY S SISl Examples

Stream Clustering

e Mining massive, unbounded sequences of
data objects of rapid but often

changeable rates.
e Example applications: Sensor networks, @
smart homes, Internet traffic monitoring, @ & points of Dat Steams
ATM transactions . @@ @ Outlier Micro Clusters
e Approaches: partition (ClusStream), @

grid-based (DStream), density-based
(DenStream)

e Tools: MOA, RapidMiner etc.
e Challenges: concept drift

Lecture 3 25 / 28
Recap

Recap

The online averaging problem

Competitive learning: online k-means

Other online algorithms

Leader-follower

e Density-based
© Your algorithm?

ICEVSISENNINSEl Examples

Mini-batch k-means

e Sculley, Web-Scale K-Means Clustering, WWW’10

@ Mini-batches tend to have lower stochastic noise than individual
examples in SGD

Algorithm 1 Mini-batch k-Means.

1: Given: k, mini-batch size b, iterations t, data set X

2: Initialize each ¢ € C with an x picked randomly from X
3:v—0

4: fori=1tot do

5: M « b examples picked randomly from X

6: for xe M do

7: d[x] < f(C,x) // Cache the center nearest to x
8: end for

9: for xe M do

10: c — d[x] // Get cached center for this x
11: v[c] « v[c] +1 // Update per-center counts
12: n— ﬁ // Get per-center learning rate
13: c— (1—nc+nx // Take gradient step
14: end for

15: end for

Lecture 3 26 / 28
Recap

Further Readings

e ER3: Kaur et al., Stream clustering algorithms: a primer, in Big
Data in Complex Systems, 105-145, 2015.

e ER4: Liithr and Mihai Lazarescu. 2009. Incremental clustering of
dynamic data streams using connectivity based representative
points. Data Knowl. Eng. 68.

e Silva et al., Data stream clustering: A survey, ACM Computing
Surveys, 46:1, DOI: 10.1145/2522968.2522981.

e Cao et al., Density-based clustering over an evolving data stream
with noise, SDM’06, DOI: 10.1137/1.9781611972764.29.

@ DemoGNG, URL http://www.demogng.de

27/ 2¢ T T P 7

