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Abstract

We propose a technique for producing ‘visual explana-

tions’ for decisions from a large class of Convolutional Neu-

ral Network (CNN)-based models, making them more trans-

parent. Our approach – Gradient-weighted Class Activation

Mapping (Grad-CAM), uses the gradients of any target con-

cept (say logits for ‘dog’ or even a caption), flowing into

the final convolutional layer to produce a coarse localiza-

tion map highlighting the important regions in the image for

predicting the concept. Unlike previous approaches, Grad-

CAM is applicable to a wide variety of CNN model-families:

(1) CNNs with fully-connected layers (e.g. VGG), (2) CNNs

used for structured outputs (e.g. captioning), (3) CNNs used

in tasks with multi-modal inputs (e.g. visual question an-

swering) or reinforcement learning, without architectural

changes or re-training. We combine Grad-CAM with exist-

ing fine-grained visualizations to create a high-resolution

class-discriminative visualization, Guided Grad-CAM, and

apply it to image classification, image captioning, and visual

question answering (VQA) models, including ResNet-based

architectures. In the context of image classification mod-

els, our visualizations (a) lend insights into failure modes

of these models (showing that seemingly unreasonable pre-

dictions have reasonable explanations), (b) outperform pre-

vious methods on the ILSVRC-15 weakly-supervised local-

ization task, (c) are more faithful to the underlying model,

and (d) help achieve model generalization by identifying

dataset bias. For image captioning and VQA, our visual-

izations show even non-attention based models can localize

inputs. Finally, we design and conduct human studies to

measure if Grad-CAM explanations help users establish ap-

propriate trust in predictions from deep networks and show

that Grad-CAM helps untrained users successfully discern a

‘stronger’ deep network from a ‘weaker’ one even when both

make identical predictions. Our code is available at https:

//github.com/ramprs/grad-cam/ along with a demo

on CloudCV [2]1 and video at youtu.be/COjUB9Izk6E.

∗Work done at Virginia Tech.
1http://gradcam.cloudcv.org

1. Introduction

Convolutional Neural Networks (CNNs) and other deep

networks have enabled unprecedented breakthroughs in a

variety of computer vision tasks, from image classifica-

tion [24, 16] to object detection [15], semantic segmenta-

tion [27], image captioning [43, 6, 12, 21], and more recently,

visual question answering [3, 14, 32, 36]. While these deep

neural networks enable superior performance, their lack of

decomposability into intuitive and understandable compo-

nents makes them hard to interpret [26]. Consequently, when

today’s intelligent systems fail, they fail spectacularly dis-

gracefully, without warning or explanation, leaving a user

staring at an incoherent output, wondering why.

Interpretability matters. In order to build trust in intel-

ligent systems and move towards their meaningful integra-

tion into our everyday lives, it is clear that we must build

‘transparent’ models that explain why they predict what they

predict. Broadly speaking, this transparency is useful at

three different stages of Artificial Intelligence (AI) evolu-

tion. First, when AI is significantly weaker than humans and

not yet reliably ‘deployable’ (e.g. visual question answering

[3]), the goal of transparency and explanations is to identify

the failure modes [1, 17], thereby helping researchers focus

their efforts on the most fruitful research directions. Second,

when AI is on par with humans and reliably ‘deployable’

(e.g., image classification [22] on a set of categories trained

on sufficient data), the goal is to establish appropriate trust

and confidence in users. Third, when AI is significantly

stronger than humans (e.g. chess or Go [39]), the goal of

explanations is in machine teaching [20] – i.e., a machine

teaching a human about how to make better decisions.

There typically exists a trade-off between accuracy and

simplicity or interpretability. Classical rule-based or ex-

pert systems [18] are highly interpretable but not very accu-

rate (or robust). Decomposable pipelines where each stage

is hand-designed are thought to be more interpretable as

each individual component assumes a natural intuitive ex-

planation. By using deep models, we sacrifice interpretable

modules for uninterpretable ones that achieve greater perfor-
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(a) Original Image (b) Guided Backprop ‘Cat’ (c) Grad-CAM ‘Cat’ (d)Guided Grad-CAM ‘Cat’ (e) Occlusion map for ‘Cat’ (f) ResNet Grad-CAM ‘Cat’

(g) Original Image (h) Guided Backprop ‘Dog’ (i) Grad-CAM ‘Dog’ (j)Guided Grad-CAM ‘Dog’ (k) Occlusion map for ‘Dog’ (l)ResNet Grad-CAM ‘Dog’

Figure 1: (a) Original image with a cat and a dog. (b-f) Support for the cat category according to various visualizations for VGG-16 and ResNet. (b) Guided Backpropagation [42]:

highlights all contributing features. (c, f) Grad-CAM (Ours): localizes class-discriminative regions, (d) Combining (b) and (c) gives Guided Grad-CAM, which gives high-

resolution class-discriminative visualizations. Interestingly, the localizations achieved by our Grad-CAM technique, (c) are very similar to results from occlusion sensitivity (e),

while being orders of magnitude cheaper to compute. (f, l) are Grad-CAM visualizations for ResNet-18 layer. Note that in (c, f, i, l), red regions corresponds to high score for

class, while in (e, k), blue corresponds to evidence for the class. Figure best viewed in color.

mance through greater abstraction (more layers) and tighter

integration (end-to-end training). Recently introduced deep

residual networks (ResNets) [16] are over 200-layers deep

and have shown state-of-the-art performance in several chal-

lenging tasks. Such complexity makes these models hard to

interpret. As such, deep models are beginning to explore the

spectrum between interpretability and accuracy.

Zhou et al. [47] recently proposed a technique called

Class Activation Mapping (CAM) for identifying discrimina-

tive regions used by a restricted class of image classification

CNNs which do not contain any fully-connected layers. In

essence, this work trades off model complexity and perfor-

mance for more transparency into the working of the model.

In contrast, we make existing state-of-the-art deep models

interpretable without altering their architecture, thus avoid-

ing the interpretability vs. accuracy trade-off. Our approach

is a generalization of CAM [47] and is applicable to a sig-

nificantly broader range of CNN model families: (1) CNNs

with fully-connected layers (e.g. VGG), (2) CNNs used for

structured outputs (e.g. captioning), (3) CNNs used in tasks

with multi-modal inputs (e.g. VQA) or reinforcement learn-

ing, without requiring architectural changes or re-training or

any secondary learning component.

What makes a good visual explanation? Consider image

classification [9] – a ‘good’ visual explanation from the

model for justifying any target category should be (a) class-

discriminative (i.e. localize the category in the image) and

(b) high-resolution (i.e. capture fine-grained detail).

Fig. 1 shows outputs from a number of visualizations for

the ‘tiger cat’ class (top) and ‘boxer’ (dog) class (bottom).

Pixel-space gradient visualizations such as Guided Back-

propagation [42] and Deconvolution [45] are high-resolution

and highlight fine-grained details in the image, but are not

class-discriminative (Fig. 1b and Fig. 1h are very similar).

In contrast, localization approaches like CAM or our pro-

posed method Gradient-weighted Class Activation Mapping

(Grad-CAM), are highly class-discriminative (the ‘cat’ expla-

nation exclusively highlights the ‘cat’ regions but not ‘dog’

regions in Fig. 1c, and vice versa in Fig. 1i).

In order to combine the best of both worlds, we show that

it is possible to fuse existing pixel-space gradient visualiza-

tions with Grad-CAM to create Guided Grad-CAM visualiza-

tions that are both high-resolution and class-discriminative.

As a result, important regions of the image which correspond

to any decision of interest are visualized in high-resolution

detail even if the image contains evidence for multiple possi-

ble concepts, as shown in Figures 1d and 1j. When visualized

for ‘tiger cat’, Guided Grad-CAM not only highlights the

cat regions, but also highlights the stripes on the cat, which

is important for predicting that particular variety of cat.

To summarize, our contributions are as follows:

(1) We propose Grad-CAM, a class-discriminative localiza-

tion technique that can generate visual explanations from any

CNN-based network without requiring architectural changes

or re-training. We evaluate Grad-CAM for localization (Sec-

tion 4.1), and faithfulness to model (Section 5.3), where it

outperforms baselines.

(2) We apply Grad-CAM to existing top-performing classi-

fication, captioning (Section 7.1), and VQA (Section 7.2)

models. For image classification, our visualizations help

identify dataset bias (Section 6.2) and lend insight into fail-

ures of current CNNs (Section 6.1), showing that seemingly

unreasonable predictions have reasonable explanations. For

captioning and VQA, our visualizations expose the some-

what surprising insight that common CNN + LSTM models

are often good at localizing discriminative image regions

despite not being trained on grounded image-text pairs.

(3) We visualize ResNets [16] applied to image classification
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and VQA (Section 7.2). Going from deep to shallow layers,

the discriminative ability of Grad-CAM significantly reduces

as we encounter layers with different output dimensionality.

(4) We conduct human studies (Section 5) that show Guided

Grad-CAM explanations are class-discriminative and not

only help humans establish trust, but also help untrained

users successfully discern a ‘stronger’ network from a

‘weaker’ one, even when both make identical predictions.

2. Related Work

Our work draws on recent work in CNN visualizations,

model trust assessment, and weakly-supervised localization.

Visualizing CNNs. A number of previous works [40, 42,

45, 13] have visualized CNN predictions by highlighting

‘important’ pixels (i.e. change in intensities of these pixels

have the most impact on the prediction’s score). Specifi-

cally, Simonyan et al. [40] visualize partial derivatives of

predicted class scores w.r.t. pixel intensities, while Guided

Backpropagation [42] and Deconvolution [45] make modifi-

cations to ‘raw’ gradients that result in qualitative improve-

ments. These approaches are compared in [30]. Despite

producing fine-grained visualizations, these methods are not

class-discriminative. Visualizations with respect to different

classes are nearly identical (see Figures 1b and 1h).

Other visualization methods synthesize images to maxi-

mally activate a network unit [40, 11] or invert a latent rep-

resentation [31, 10]. Although these can be high-resolution

and class-discriminative, they visualize a model overall and

not predictions for specific input images.

Assessing Model Trust. Motivated by notions of inter-

pretability [26] and assessing trust in models [37], we eval-

uate Grad-CAM visualizations in a manner similar to [37]

via human studies to show that they can be important tools

for users to evaluate and place trust in automated systems.

Weakly supervised localization. Another relevant line of

work is weakly supervised localization in the context of

CNNs, where the task is to localize objects in images using

only whole image class labels [7, 33, 34, 47].

Most relevant to our approach is the Class Activation Map-

ping (CAM) approach to localization [47]. This approach

modifies image classification CNN architectures replacing

fully-connected layers with convolutional layers and global

average pooling [25], thus achieving class-specific feature

maps. Others have investigated similar methods using global

max pooling [34] and log-sum-exp pooling [35].

A drawback of CAM is that it requires feature maps to

directly precede softmax layers, so it is only applicable to a

particular kind of CNN architectures performing global av-

erage pooling over convolutional maps immediately prior to

prediction (i.e. conv feature maps → global average pooling

→ softmax layer). Such architectures may achieve inferior

accuracies compared to general networks on some tasks (e.g.

image classification) or may simply be inapplicable to any

other tasks (e.g. image captioning or VQA). We introduce

a new way of combining feature maps using the gradient

signal that does not require any modification in the network

architecture. This allows our approach to be applied to any

CNN-based architecture, including those for image caption-

ing and visual question answering. For a fully-convolutional

architecture, Grad-CAM reduces to CAM. Thus, Grad-CAM

is a generalization to CAM.

Other methods approach localization by classifying per-

turbations of the input image. Zeiler and Fergus [45] perturb

inputs by occluding patches and classifying the occluded

image, typically resulting in lower classification scores for

relevant objects when those objects are occluded. This prin-

ciple is applied for localization in [4]. Oquab et al. [33]

classify many patches containing a pixel then average these

patch class-wise scores to provide the pixel’s class-wise

score. Unlike these, our approach achieves localization in

one shot; it only requires a single forward and a partial

backward pass per image and thus is typically an order of

magnitude more efficient. In recent work Zhang et al. [46] in-

troduce contrastive Marginal Winning Probability (c-MWP),

a probabilistic Winner-Take-All formulation for modelling

the top-down attention for neural classification models which

can highlight discriminative regions. This is slower than

Grad-CAM and like CAM, it only works for Image Classifi-

cation CNNs. Moreover, quantitative and qualitative results

are worse than for Grad-CAM (see Sec. 4.1 and [38]).

3. Approach

A number of previous works have asserted that deeper

representations in a CNN capture higher-level visual con-

structs [5, 31]. Furthermore, convolutional features naturally

retain spatial information which is lost in fully-connected

layers, so we can expect the last convolutional layers to

have the best compromise between high-level semantics and

detailed spatial information. The neurons in these layers

look for semantic class-specific information in the image

(say object parts). Grad-CAM uses the gradient informa-

tion flowing into the last convolutional layer of the CNN

to understand the importance of each neuron for a decision

of interest. Although our technique is very generic and can

be used to visualize any activation in a deep network, in

this work we focus on explaining decisions the network can

possibly make.

As shown in Fig. 2, in order to obtain the class-

discriminative localization map Grad-CAM Lc
Grad-CAM ∈

R
u×v of width u and height v for any class c , we first

compute the gradient of the score for class c, yc (before the

softmax), with respect to feature maps Ak of a convolutional

layer, i.e. ∂yc

∂Ak . These gradients flowing back are global-
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Figure 2: Grad-CAM overview: Given an image and a class of interest (e.g., ‘tiger cat’ or any other type of differentiable output) as input, we forward propagate the image

through the CNN part of the model and then through task-specific computations to obtain a raw score for the category. The gradients are set to zero for all classes except the

desired class (tiger cat), which is set to 1. This signal is then backpropagated to the rectified convolutional feature maps of interest, which we combine to compute the coarse

Grad-CAM localization (blue heatmap) which represents where the model has to look to make the particular decision. Finally, we pointwise multiply the heatmap with guided

backpropagation to get Guided Grad-CAM visualizations which are both high-resolution and concept-specific.

average-pooled to obtain the neuron importance weights αc
k:

αc
k =

global average pooling
︷ ︸︸ ︷

1

Z

∑

i

∑

j

∂yc

∂Ak
ij

︸ ︷︷ ︸

gradients via backprop

(1)

This weight αc
k represents a partial linearization of the deep

network downstream from A, and captures the ‘importance’

of feature map k for a target class c.

We perform a weighted combination of forward activation

maps, and follow it by a ReLU to obtain,

Lc
Grad-CAM = ReLU

(
∑

k

αc
kA

k

)

︸ ︷︷ ︸

linear combination

(2)

Notice that this results in a coarse heat-map of the same

size as the convolutional feature maps (14× 14 in the case

of last convolutional layers of VGG [41] and AlexNet [24]

networks). We apply a ReLU to the linear combination of

maps because we are only interested in the features that

have a positive influence on the class of interest, i.e. pixels

whose intensity should be increased in order to increase yc.

Negative pixels are likely to belong to other categories in

the image. As expected, without this ReLU, localization

maps sometimes highlight more than just the desired class

and achieve lower localization performance. Figures 1c, 1f

and 1i, 1l show Grad-CAM visualizations for ‘tiger cat’ and

‘boxer (dog)’ respectively. Ablation studies and more Grad-

CAM visualizations can be found in [38]. In general, yc need

not be the class score produced by an image classification

CNN. It could be any differentiable activation including

words from a caption or the answer to a question.

Grad-CAM as a generalization to CAM. Recall that

CAM [47] produces a localization map for an image classifi-

cation CNN with a specific kind of architecture where global

average pooled convolutional feature maps are fed directly

into softmax. Specifically, let the penultimate layer produce

K feature maps, Ak
∈ R

u×v. These feature maps are then

spatially pooled using Global Average Pooling (GAP) and

linearly transformed to produce a score Sc for each class c,

Sc
=

∑

k

wc
k

︸︷︷︸

class feature weights

global average pooling
︷ ︸︸ ︷

1

Z

∑

i

∑

j

Ak
ij

︸︷︷︸

feature map

(3)

To produce the localization map for modified image clas-

sification architectures, such as above, the order of summa-

tions can be interchanged to obtain Lc
CAM,

Sc
=

1

Z

∑

i

∑

j

∑

k

wc
kA

k
ij

︸ ︷︷ ︸

Lc

CAM

(4)

Note that this modification of architecture necessitates re-

training because not all architectures have weights wc
k con-

necting features maps to outputs. When Grad-CAM is ap-

plied to these architectures αc
k = wc

k — making Grad-CAM

a strict generalization of CAM (see appendix A of [38] for

details).

The above generalization also allows us to generate visual

explanations from CNN-based models that cascade convo-

lutional layers with much more complex interactions. In-

deed, we apply Grad-CAM to ‘beyond classification’ tasks

including models that utilize CNNs for image captioning

and Visual Question Answering (VQA) (Sec. 7.2).

Guided Grad-CAM. While Grad-CAM visualizations are

class-discriminative and localize relevant image regions well,
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they lack the ability to show fine-grained importance like

pixel-space gradient visualization methods (Guided Back-

propagation and Deconvolution). For example in Figure 1c,

Grad-CAM can easily localize the cat region; however, it is

unclear from the low-resolutions of the heat-map why the

network predicts this particular instance as ‘tiger cat’. In

order to combine the best aspects of both, we fuse Guided

Backpropagation and Grad-CAM visualizations via point-

wise multiplication (Lc
Grad-CAM is first up-sampled to the

input image resolution using bi-linear interpolation). Fig. 2

bottom-left illustrates this fusion. This visualization is both

high-resolution (when the class of interest is ‘tiger cat’, it

identifies important ‘tiger cat’ features like stripes, pointy

ears and eyes) and class-discriminative (it shows the ‘tiger

cat’ but not the ‘boxer (dog)’). Replacing Guided Backpropa-

gation with Deconvolution in the above gives similar results,

but we found Deconvolution to have artifacts (and Guided

Backpropagation visualizations were generally less noisy),

so we chose Guided Backpropagation over Deconvolution.

4. Evaluating Localization

4.1. Weakly­supervised Localization

In this section, we evaluate the localization capability

of Grad-CAM in the context of image classification. The

ImageNet localization challenge [9] requires competing ap-

proaches to provide bounding boxes in addition to classifica-

tion labels. Similar to classification, evaluation is performed

for both the top-1 and top-5 predicted categories. Given an

image, we first obtain class predictions from our network

and then generate Grad-CAM maps for each of the predicted

classes and binarize with threshold of 15% of the max in-

tensity. This results in connected segments of pixels and we

draw our bounding box around the single largest segment.

We evaluate the pretrained off-the-shelf VGG-16 [41]

model from the Caffe [19] Model Zoo. Following ILSVRC-

15 evaluation, we report both top-1 and top-5 localization

error on the val set in Table. 1. Grad-CAM localization errors

are significantly lower than those achieved by c-MWP [46]

and Simonyan et al. [40] for the VGG-16 model, which uses

grabcut to post-process image space gradients into heat maps.

Grad-CAM also achieves better top-1 localization error than

CAM [47], which requires a change in the model archi-

tecture, necessitates re-training and thereby achieves worse

classification errors (2.98% increase in top-1), whereas Grad-

CAM makes no compromise on classification performance.

Method Top-1 loc error Top-5 loc error Top-1 cls error Top-5 cls error

Backprop on VGG-16 [40] 61.12 51.46 30.38 10.89

c-MWP on VGG-16 [46] 70.92 63.04 30.38 10.89

Grad-CAM on VGG-16 (ours) 56.51 46.41 30.38 10.89

VGG-16-GAP (CAM) [47] 57.20 45.14 33.40 12.20

Table 1: Classification and Localization on ILSVRC-15 val (lower is better).

Figure 3: AMT interfaces for evaluating different visualizations for class

discrimination (left) and trustworthiness (right). Guided Grad-CAM outper-

forms baseline approaches (Guided-backprop and Deconvolution) showing

that our visualizations are more class-discriminative and help humans place

trust in a more accurate classifier.

5. Evaluating Visualizations

Our first human study evaluates the main premise of

our approach: are Grad-CAM visualizations more class-

discriminative than previous techniques? Having established

that, we turn to understanding whether it can lead an end

user to trust the visualized models appropriately. For these

experiments, we compare VGG-16 and AlexNet CNNs fine-

tuned on PASCAL VOC 2007 train set and use the val set to

generate visualizations.

5.1. Evaluating Class Discrimination

In order to measure whether Grad-CAM helps distinguish

between classes we select images from VOC 2007 val set

that contain exactly two annotated categories and create vi-

sualizations for each one of them. For both VGG-16 and

AlexNet CNNs, we obtain category-specific visualizations

using four techniques: Deconvolution, Guided Backprop-

agation, and Grad-CAM versions of each these methods

(Deconvolution Grad-CAM and Guided Grad-CAM). We

show visualizations to 43 workers on Amazon Mechanical

Turk (AMT) and ask them “Which of the two object cate-

gories is depicted in the image?” as shown in Fig. 3.

Intuitively, a good prediction explanation is one that pro-

duces discriminative visualizations for the class of interest.

The experiment was conducted using all 4 visualizations

for 90 image-category pairs (i.e. 360 visualizations); 9 rat-

ings were collected for each image, evaluated against the

ground truth and averaged to obtain the accuracy. When

viewing Guided Grad-CAM, human subjects can correctly

identify the category being visualized in 61.23% of cases

(compared to 44.44% for Guided Backpropagation; thus,

Grad-CAM improves human performance by 16.79%). Sim-

ilarly, we also find that Grad-CAM helps make Deconvo-

lution more class-discriminative (from 53.33% to 61.23%).

Guided Grad-CAM performs the best among all the methods.

Interestingly, our results seem to indicate that Deconvolu-

tion is more class discriminative than Guided Backpropaga-

tion, although Guided Backpropagation is more aesthetically

pleasing than Deconvolution. To the best of our knowledge,

our evaluations are the first to quantify this subtle difference.
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5.2. Evaluating Trust

Given two prediction explanations, we evaluate which

seems more trustworthy. We use AlexNet and VGG-16 to

compare Guided Backpropagation and Guided Grad-CAM

visualizations, noting that VGG-16 is known to be more

reliable than AlexNet with an accuracy of 79.09 mAP (vs.

69.20 mAP) on PASCAL classification. In order to tease

apart the efficacy of the visualization from the accuracy of

the model being visualized, we consider only those instances

where both models made the same prediction as ground truth.

Given a visualization from AlexNet and one from VGG-16,

and the predicted object category, 54 AMT workers were

instructed to rate the reliability of the models relative to each

other on a scale of clearly more/less reliable (+/-2), slightly

more/less reliable (+/-1), and equally reliable (0). This in-

terface is shown in Fig. 3. To eliminate any biases, VGG

and AlexNet were assigned to be model1 with approximately

equal probability. Remarkably, we find that human sub-

jects are able to identify the more accurate classifier (VGG

over AlexNet) simply from the different explanations, de-

spite identical predictions. With Guided Backpropagation,

humans assign VGG an average score of 1.00 which means

it is slightly more reliable than AlexNet, while Guided Grad-

CAM achieves a higher score of 1.27 which is closer to

saying that VGG is clearly more reliable. Thus our visualiza-

tion can help users place trust in a model that can generalize

better, just based on individual prediction explanations.

5.3. Faithfulness vs. Interpretability

Faithfulness of a visualization to a model is its ability to

accurately explain the function learned by the model. Nat-

urally, there exists a trade-off between the interpretability

and faithfulness of a visualization: a more faithful visual-

ization is typically less interpretable and vice versa. In fact,

one could argue that a fully faithful explanation is the entire

description of the model, which in the case of deep models

is not interpretable/easy to visualize. We have verified in

previous sections that our visualizations are reasonably in-

terpretable. We now evaluate how faithful they are to the

underlying model. One expectation is that our explanations

should be locally accurate, i.e. in the vicinity of the input data

point, our explanation should be faithful to the model [37].

For comparison, we need a reference explanation with

high local-faithfulness. One obvious choice for such a vi-

sualization is image occlusion [45], where we measure the

difference in CNN scores when patches of the input image

are masked. Interestingly, patches which change the CNN

score are also patches to which Grad-CAM and Guided Grad-

CAM assign high intensity, achieving rank correlation 0.254

and 0.261 (vs. 0.168, 0.220 and 0.208 achieved by Guided

Backpropagation, c-MWP and CAM, respectively) averaged

over 2510 images in PASCAL 2007 val set. This shows that

Grad-CAM visualizations are more faithful to the original

model compared to all existing methods. Through localiza-

tion experiment and human studies, we see that Grad-CAM

visualizations are more interpretable, and through correla-

tion with occlusion maps we see that Grad-CAM is more

faithful to the model.

6. Diagnosing image classification CNNs

6.1. Analyzing Failure Modes for VGG­16

(a) (b) (c) (d)

Figure 4: In these cases the model (VGG-16) failed to predict the correct

class in its top 1 (a and d) and top 5 (b and c) predictions. Humans would

find it hard to explain some of these predictions without looking at the

visualization for the predicted class. But with Grad-CAM, these mistakes

seem justifiable.

We use Guided Grad-CAM to analyze failure modes of

the VGG-16 CNN on ImageNet classification [9]. In order to

see what mistakes a network is making we first get a list of ex-

amples that the network (VGG-16) fails to classify correctly.

For the misclassified examples, we use Guided Grad-CAM

to visualize both the correct and the predicted class. A major

advantage of Guided Grad-CAM visualization over other

methods that allows for this analysis is its high-resolution

and its ability to be highly class-discriminative. As seen

in Fig. 4, some failures are due to ambiguities inherent in

ImageNet classification. We can also see that seemingly

unreasonable predictions have reasonable explanations, an

observation also made in HOGgles [44].

6.2. Identifying bias in dataset

In this section we demonstrate another use of Grad-CAM:

identifying and thus reducing bias in training datasets. Mod-

els trained on biased datasets may not generalize to real-

world scenarios, or worse, may perpetuate biases and stereo-

types (w.r.t. gender, race, age, etc.). We finetune an ImageNet

trained VGG-16 model for the task of classifying “doctor”

vs. “nurse”. We built our training dataset using the top 250

623



relevant images (for each class) from a popular image search

engine. Although the trained model achieved a good valida-

tion accuracy, it did not generalize as well (82%).

Grad-CAM visualizations of the model predictions re-

vealed that the model had learned to look at the person’s face

/ hairstyle to distinguish nurses from doctors, thus learning

a gender stereotype. Indeed, the model was misclassifying

several female doctors to be a nurse and male nurses to be

a doctor. Clearly, this is problematic. Turns out the im-

age search results were gender-biased (78% of images for

doctors were men, and 93% images for nurses were women).

Through this intuition gained from our visualization, we

reduced the bias from the training set by adding in male

nurses and female doctors to the training set, while main-

taining the same number of images per class as before. The

re-trained model now generalizes better to a more balanced

test set (90%). Additional analysis along with Grad-CAM

visualizations from both models can be found in [38]. This

experiment demonstrates that Grad-CAM can help detect

and remove biases in datasets, which is important not just

for generalization, but also for fair and ethical outcomes as

more algorithmic decisions are made in society.

7. Image Captioning and VQA

Finally, we apply our Grad-CAM technique to the im-

age captioning [6, 21, 43] and Visual Question Answering

(VQA) [3, 14, 32, 36] tasks. We find that Grad-CAM leads to

interpretable visual explanations for these tasks as compared

to baseline visualizations which do not change noticeably

across different predictions. Note that existing visualiza-

tion techniques are either not class-discriminative (Guided

Backpropagation, Deconvolution), simply cannot be used

for these tasks or architectures, or both (CAM or c-MWP).

7.1. Image Captioning

In this section, we visualize spatial support for an image

captioning model using Grad-CAM. We build Grad-CAM

on top of the publicly available neuraltalk22 implementa-

tion [23] that uses a finetuned VGG-16 CNN for images and

an LSTM-based language model. Note that this model does

not have an explicit attention mechanism. Given a caption,

we compute the gradient of its log probability w.r.t. units in

the last convolutional layer of the CNN (conv5_3 for VGG-

16) and generate Grad-CAM visualizations as described in

Section 3. See Fig. 5a. In the first example, the Grad-CAM

maps for the generated caption localize every occurrence of

both the kites and people in spite of their relatively small

size. In the next example, notice how Grad-CAM correctly

highlights the pizza and the man, but ignores the woman

nearby, since ‘woman’ is not mentioned in the caption. More

qualitative examples can be found in [38].

2https://github.com/karpathy/neuraltalk2

Comparison to dense captioning. Johnson et al. [21] re-

cently introduced the Dense Captioning (DenseCap) task

that requires a system to jointly localize and caption salient

regions in a given image. Their model consists of a Fully

Convolutional Localization Network (FCLN) and an LSTM-

based language model that produces both bounding boxes for

regions of interest and associated captions in a single forward

pass. Using DenseCap, we generate 5 region-specific cap-

tions per image with associated ground truth bounding boxes.

A whole-image captioning model (neuraltalk2) should local-

ize a caption inside the box it was generated for, which is

shown in Fig. 5b. We measure this by computing the ratio

of average activation inside vs. outside the box. A higher

ratio is better because it indicates stronger attention on the

region that generated the caption. Uniformly highlighting

the whole image results in a baseline ratio of 1.0 whereas

Grad-CAM achieves 3.27 ± 0.18. Adding high-resolution

detail gives an improved baseline of 2.32 ± 0.08 (Guided

Backpropagation) and the best localization at 6.38 ± 0.99

(Guided Grad-CAM). This means Grad-CAM localizations

correspond to regions in the image that the DenseCap model

described, even though the holistic captioning model was not

trained with any region or bounding-box level annotations.

7.2. Visual Question Answering

Typical VQA pipelines [3, 14, 32, 36] consist of a CNN

to model images and an RNN language model for questions.

The image and the question representations are fused to pre-

dict the answer, typically with a 1000-way classification.

Since this is a classification problem, we pick an answer (the

score yc in (3)) and use its score to compute Grad-CAM to

show image evidence that supports the answer. Despite the

complexity of the task, involving both visual and language

components, the explanations (of the VQA model from [28])

described in Fig. 6 are surprisingly intuitive and informative.

We quantify the performance of Grad-CAM via correlation

with occlusion maps, as in Section 5.3. Grad-CAM achieves

a rank correlation (with occlusion map) of 0.60 ± 0.038

whereas Guided Backpropagation achieves 0.42 ± 0.038, in-

dicating higher faithfulness of our Grad-CAM visualization.

Comparison to Human Attention. Das et al. [8] collected

human attention maps for a subset of the VQA dataset [3].

These maps have high intensity where humans looked in the

image in order to answer a visual question. Human attention

maps are compared to Grad-CAM visualizations for the

VQA model from [28] on 1374 val question-image (QI)

pairs from [3] using the rank correlation evaluation protocol

developed in [8]. Grad-CAM and human attention maps

have a correlation of 0.136, which is statistically higher than

chance or random attention maps (zero correlation). This

shows that despite not being trained on grounded image-text

pairs, even non-attention based CNN + LSTM based VQA

models are surprisingly good at localizing discriminative
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(a) Image captioning explanations (b) Comparison to DenseCap

Figure 5: Interpreting image captioning models: We use our class-discriminative localization technique, Grad-CAM to find spatial support regions for captions

in images. Fig. 5a Visual explanations from image captioning model [23] highlighting image regions considered to be important for producing the captions.

Fig. 5b Grad-CAM localizations of a global or holistic captioning model for captions generated by a dense captioning model [21] for the three bounding box

proposals marked on the left. We can see that we get back Grad-CAM localizations (right) that agree with those bounding boxes – even though the captioning

model and Grad-CAM techniques do not use any bounding box annotations.

(a) Visualizing VQA model from [28]

(b) Visualizing ResNet based Hierarchical co-attention VQA model from [29]

Figure 6: Qualitative Results for our VQA experiments: (a) Given the image

on the left and the question “What color is the firehydrant?”, we visualize

Grad-CAMs and Guided Grad-CAMs for the answers “red", “yellow" and

“yellow and red". Grad-CAM visualizations are highly interpretable and

help explain any target prediction – for “red”, the model focuses on the

bottom red part of the firehydrant; when forced to answer “yellow”, the

model concentrates on it‘s top yellow cap, and when forced to answer

“yellow and red", it looks at the whole firehydrant! (b) Our approach is

capable of providing interpretable explanations even for complex models.

regions required to output a particular answer.

Visualizing ResNet-based VQA model with attention.

Lu et al. [29] use a 200 layer ResNet [16] to encode the

image, and jointly learn a hierarchical attention mechanism

on the question and image. Fig. 6b shows Grad-CAM vi-

sualization for this network. As we visualize deeper layers

of the ResNet we see small changes in Grad-CAM for most

adjacent layers and larger changes between layers that in-

volve dimensionality reduction. Visualizations for various

layers in ResNet can be found in [38]. To the best of our

knowledge, we are the first to visualize decisions made by

ResNet-based architectures.

8. Conclusion

In this work, we proposed a novel class-discriminative

localization technique—Gradient-weighted Class Activation

Mapping (Grad-CAM)—for making any CNN-based mod-

els more transparent by producing visual explanations. Fur-

ther, we combined our Grad-CAM localizations with exist-

ing high-resolution visualizations to obtain high-resolution

class-discriminative Guided Grad-CAM visualizations. Our

visualizations outperform all existing approaches on both

aspects: interpretability and faithfulness to original model.

Extensive human studies reveal that our visualizations can

discriminate between classes more accurately, better reveal

the trustworthiness of a classifier, and help identify biases

in datasets. Finally, we showed the broad applicability of

Grad-CAM to various off-the-shelf available architectures

for tasks including image classification, image captioning

and VQA providing faithful visual explanations for possible

model decisions. We believe that a true AI system should

not only be intelligent, but also be able to reason about its

beliefs and actions for humans to trust it. Future work in-

cludes explaining the decisions made by deep networks in

domains such as reinforcement learning, natural language

processing and video applications.
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