
Efficient Image Evidence Analysis of CNN Classification Results

Keyang Zhou and Bernhard Kainz
Imperial College London

180 Queen’s Gate
keyang.zhou16@imperial.ac.uk; bkainz@imperial.ac.uk

Abstract

Convolutional neural networks (CNNs) define the cur-
rent state-of-the-art for image recognition. With their
emerging popularity, especially for critical applications like
medical image analysis or self-driving cars, confirmability
is becoming an issue. The black-box nature of trained pre-
dictors make it difficult to trace failure cases or to under-
stand the internal reasoning processes leading to results.
In this paper we introduce a novel efficient method to visu-
alise evidence that lead to decisions in CNNs. In contrast
to network fixation or saliency map methods, our method
is able to illustrate the evidence for or against a classi-
fier’s decision in input pixel space approximately 10/times
faster than previous methods. We also show that our ap-
proach is less prone to noise and can focus on the most
relevant input regions, thus making it more accurate and
interpretable. Moreover, by making simplifications we link
our method with other visualisation methods, providing a
general explanation for gradient-based visualisation tech-
niques. We believe that our work makes network introspec-
tion more feasible for debugging and understanding deep
convolutional networks. This will increase trust between
humans and deep learning models.

1. Introduction
CNNs learn to construct a hierarchy of representations

from training images. These representations are incompre-
hensible to humans. It is challenging to gain a good under-
standing of what a trained network has learned without us-
ing appropriate visualisation techniques. There have been
several efforts devoted to visualising deep neural network
inference in recent years. These techniques complement
each other to show different aspects of a CNN inference. An
early approach to network introspection is based on Acti-
vation Maximization. Activation Maximization aims to find
out what a neuron has learned by finding the image to which
a neuron is maximally activated. Then the pattern in the im-
age can be thought as an approximation to the learned repre-

sentation. Activation Maximization collects sample images
from the training set that have the highest activations for the
neuron. By comparing them for similarities a common pat-
tern can be found. This naı̈ve approach is easy to implement
but has several drawbacks. First, there is no quantitative
measure of similarity and human observation is ambiguous
and error-prone. Images may be interpreted in several ways.
Second, the whole training set has to be fed into the model
to compute activation of neurons for every image, which is
very time-consuming. Hence, it is often preferred to synthe-
size an image that can maximally activate a given neuron.

The aim is to maximize the activation of a neuron, thus
this can be treated as an optimisation problem [5]. Let
ai (x; θ) be the activation of neuron i. It is a function of
input image x and model parameters θ. We want to find a
specific input x∗ that maximizes ai with

x∗ = argmax
‖x‖=p

ai (x; θ) . (1)

This optimisation problem can be solved by gradient ascent.
To start with, x is an image filled with random pixels. In
each iteration, the activation ai is computed. Its derivative
with respect to x is then used to update the pixel intensity
of x. This process is repeated until convergence, and the
resulting image should have high activation for neuron i.

Applying this technique to neurons in hidden layers can
produce some recognisable features learned by the network.
However, if the aim is to visualise neurons in the output
layer, this procedure would fail and generate images inter-
pretable to humans [10]. An improvement was made by
Simonyan et al. [14]. They added L2 regularization to the
gradient ascent formulation and proposed

x∗ = argmax
x

(
ai (x; θ)− λ ‖x‖22

)
. (2)

In Eq. 2, λ is a regularization parameter. It controls the
degree to which x is penalized. With this small change in
the objective function, gradient ascent generates more inter-
pretable images for neurons in the output layer.

Based on this work, Yosinski et al. [15] further general-
ized the gradient ascent updating rule. Instead of sticking to

1

ar
X

iv
:1

80
1.

01
69

3v
1

 [
cs

.C
V

]
 5

 J
an

 2
01

8

L2 regularization, they regularized an operator rθ and ex-
perimented with different options as

x← rθ

(
x+ η

∂ai
∂x

)
. (3)

Here, rθ may refer to L2 regularization, Gaussian blur or
pixel clipping. In practice, a combination of these regular-
izers has shown to produce the most natural images. Figure
1 shows the visualization of output layer neurons in an 8-
layer CNN using this approach. The images in Figure 1 can

Figure 1: visualisation of output layer features [15].

capture class-specific features to some extent, but they are
too abstract and noisy for human observers to infer useful
information. A different approach of visualisation synthe-
sis was adopted by Nguyen et al. [9]. Instead of perform-
ing gradient ascent directly on the input space of the model,
they use a generator networkG for generating visualisations
and optimise on the input space of G by

x∗ = argmax
x

(
ai (G (x))− λ ‖x‖22

)
. (4)

Since G was explicitly trained to generate natural images, it
acts as a prior to ensure the interpretability of visualizations.
Example images are shown in Figure 2.

Figure 2: synthesized images that maximally activate given
output neurons [9].

Activation maximization is helpful for human observers
to understand the general representation learned by a deep
neural network. It cannot explain the network’s response
to an individual image. Representation Inversion has been
developed as a class of techniques tailored for this purpose.
It works by projecting the output or hidden activations of a
network back to input space and visualising the result.

A classic Representation Inversion algorithm is decon-
volution. As its name suggests, a deconvolutional network

(DCNN) performs the inverse operations of a CNNs [17].
In correspondence with a CNN, a DCNN has three compo-
nents: unpooling, rectification and filtering. To visualise a
given neuron, a DCNN is attached to the layers of a CNN
and all other neuron activations are set to zero. Feeding the
feature map as input to the DCNN, the inverse of all opera-
tions in the CNN are performed in reverse order until input
space is reached. Figure 3 shows the visualisation of high-

Figure 3: image patches and the corresponding recon-
structed patterns [16].

level features of a trained CNN. We can observe that pat-
terns reconstructed via deconvolution have similar shapes
for images in the same class despite their individual differ-
ences. This might not be desirable if we want to visualise
more image-specific features.

Simonyan et al. proposed to provide class saliency maps
by computing partial derivative of the class score with re-
spect to each input pixel [14]. This can be thought as a
Representation Inversion method because gradients infor-
mation is propagated back in this case.

Figure 4: an image and its corresponding saliency map [14].

Figure 4 demonstrates an example of a class saliency
map. The object’s contour is roughly preserved in the vi-
sualisation. This method is fast to compute, but it only il-
lustrates the sensitivity of a model’s prediction to individual
pixels. It cannot be used to accurately measure each pixel’s
relevance since it does not consider higher-order interac-
tions of pixels.

Bach et al. proposed the principle of conservation for
pixel relevance distribution; the sum of relevance of pixel

i, Ri, should be roughly equal to the model’s output f(x)
[2]. Following this principle, a distribution rule called layer-
wise relevance propagation is given by

Rli =
∑
j

zij∑
i′
zi′j

Rl+1
j , (5)

where Rli is relevance of neuron i in layer l and zij equals
xliw

l+1
ij .

This rule assigns relevance of upper-layer neurons to
a lower-layer neuron proportionally to their connecting
weights. Since there is a non-linear activation function be-
tween layers, an approximation rule (deep Taylor decompo-
sition) is used [8], which is given by

Ri =
∂f

∂x̃i
· (xi − x̃i), (6)

where x̃ is chosen such that f (x̃) = 0. Selvaraju et al. used

Figure 5: an image and its corresponding deep Taylor de-
composition [8]

another approach to distribute feature relevance: Gradient-
weighted Class Activation Mapping (Grad-CAM) [13] is a
generalization of Class Activation Mapping (CAM) [18]. It
is based on the observations that deeper layers of a CNN
usually encode higher-level visual representations, and spa-
tial locations are lost in fully connected layers. So, the last
convolutional layer preserves both semantic and spatial in-
formation.

Grad-CAM computes first the partial derivatives of class
scores with respect to each feature map Ak of the last con-
volutional layer and takes the average to get feature map
importance ak:

ak =
1

Z

∑
i

∑
j

∂y

∂Akij
, (7)

where Z is feature map size. Then the class activation map
is computed by

LCAM = ReLU

(∑
k

akA
K

)
� ∂f

∂x
. (8)

Since LCAM is of the same size as the last feature map, it
needs to be up-sampled to input size for visualisation, as
shown in Figure 6.

Figure 6: an image and its corresponding Grad-CAM for
different classes [13]

An alternative way to visualise the decision processes of
black-box predictors is through occluding parts of an in-
put image and observe the changes in a predictor’s perfor-
mance. If the prediction changes significantly after occlud-
ing a patch, pixels in that patch are assigned higher impor-
tance. Zeiler et al. used grey patches for occlusion and
produced heatmaps to show evidence for and against a clas-
sification decision [16].

Zintgraf et al. argued in their work that Zeiler’s approach
is inaccurate because grey patches would feed new informa-
tion into the model [19]. Instead, they applied Prediction
Difference Analysis (PDA) and measured a pixel’s impor-
tance by the change in a classifier’s output after marginal-
izing out that pixel. The marginalized classifier output is
derived from Bayes rule:

P
(
c|x\i

)
=
∑
xi

P
(
xi|x\i

)
P
(
c|xi, x\i

)
, (9)

where c is predicted class of the input image, xi is the i-th
pixel and x\i denotes all pixels of the image except xi.

A few changes have been made to accommodate this
technique to deep neural networks. First, instead of a single
pixel, a small patch of pixels with size k×k is marginalized
out each time for larger fluctuations in model prediction.
Second, for images of large size n × n, sampling a win-
dow of pixels with multivariate Gaussian distribution con-
ditioned on the remaining pixels is clearly infeasible. So,
a patch surrounding the window with size l × l is chosen
so that sampling is conditioned on that outer patch. The
algorithm is demonstrated in pseudo-code in Algorithm 1.

Figure 7: an image and its corresponding prediction differ-
ence analysis [19].

Algorithm 1 Prediction Difference Analysis [19]

1: WE = zeros(n ∗ n), counts = zeros(n ∗ n)
2: for every patch xw of size k × k in x do
3: x′ = copy(x)
4: sumw = 0
5: define patch x̂w of size l × l that contains xw
6: for s = 1 to S do
7: x′w = xw sampled from P

(
xw|

_
xw\xw

)
8: sumw += p(x′)
9: end for

10: P (c|x\xw) = sumw/S
11: WE[coordinates of xw] += log2 (odds (c|x)) −

log2 (odds (c|x\xw))
12: counts[coordinates of xw] += 1
13: end for
14: return WE/counts

Figure 7 shows an example of PDA. In the visualisation,
red regions show evidence supporting a model’s prediction,
while blue regions show evidence against a model’s predic-
tion.

This technique has several limitations. First, it is very
slow because of tens of thousands of Gaussian conditional
sampling and deep network forward passes. It could take
more than an hour to visualise a single image for some large
models. Moreover, the authors approximated Eq. 9 by tak-
ing only ten samples for computational reasons, which is a
source of error. Lastly, a Gaussian distribution conditioned
on local patch does not take global context into account,
making the conditional probability approximation less ac-
curate because local patches have been shown to have dif-
ferent semantics under different contexts [11]. Although
easy to compute, Gaussian distribution itself is not a good
model for natural images [12].

In this paper we propose an alternative formulation of
PDA to make this method (1) efficient enough to be applica-
ble for the practice, (2) more accurate, thus providing better
interpretability, and (3) link it to other gradient-based vi-
sualisation techniques. Our approach is up to 10× faster
than the original formulation and provides a comprehensive
mathematical framework for such approaches.

2. Method

In the following we will first make an informal analy-
sis of the complexity of PDA. This can help us intuitively
understand where the major performance bottlenecks are.
Then, an alternative formulation for this algorithm will be
designed to avoid these bottlenecks while producing visual-
isations with similar quality.

We shall also discuss the circumstances under which this
formulation would give accurate result, and in turn show

that it holds for most of modern CNN architectures. In Sec-
tion 3, we will run benchmark experiments on various clas-
sifiers to quantitatively compare the runtime of the original
version of PDA and the efficient version proposed by us.

Complexity of PDA: Algorithm 1 mainly consists of an
outer loop and an inner loop. The outer loop iterates over
every patch in the input image, and the inner loop takes S
samples for each given patch and performs an equal number
of forward passes of the classifier to get the average predic-
tion.

Suppose the input image is of size n×n, a patch is of size
k × k and the outer patch it conditioned on is of size l × l.
Then there are (n− k + 1)×(n− k + 1) patches in total in
the image. Hence, there are S (n− k + 1)

2 samples to be
taken. If we allow the classifier to operate on small batches
of size m, then it would run S(n−k+1)2

m forward passes.

Hence, the performance of PDA depends on sampling
time and forward pass time.

Sampling Time: One common way to draw a sam-
ple y from a multivariate Gaussian distribution is through
Cholesky decomposition, which takes the form Σ = LLT .
If Σ is positive definite, this decomposition is unique. Sup-
pose the multivariate Gaussian distribution, which we want
to sample from, has mean µ and covariance matrix Σ. We
could first decompose Σ to get L. Then, we draw a sample
x from a standard multivariate Gaussian distribution with
mean 0 and identity covariance matrix I , and transform it
by y = Lx+ µ.

Finding the exact time complexity of multivariate Gaus-
sian distribution sampling requires to first analyse the com-
plexity of Cholesky decomposition and standard Gaussian
distribution sampling. However, since the practical perfor-
mance of these basic matrix operations strongly depend on
the low level BLAS implementation and CPU instruction
set, we will empirically measure the sampling time instead
of focusing on theory.

Let the image size be 224×224, patch size be 10×10 and
number of samples taken for each patch be 10, which are the
settings adopted by Zintgraf et al. [19] in their implemen-
tation of PDA. Hence there are 224 × 224 × 10 = 501760
samples of 100 dimensions to be drawn. Under Intel Core i5
CPU and NumPy1, it is measured that the sampling process
takes roughly 5 minutes on average, which is a considerable
cost.

Forward Pass Time: Since the inference speed differs
significantly for different CNN architectures, we will again
run experiments to empirically measure the time spent on
forward pass. We will use a batch size of 160 on a Tesla K80

1the fundamental scientific computing library for Python: www.
numpy.org

www.numpy.org
www.numpy.org

GPU. Caffe2 [7] with CuDNN3 [4] support is used in the
following experiments. All models used here are pretrained
and available from the Caffe Model Zoo.

Among various CNN architectures we choose to mea-
sure inference speed of AlexNet, VGG-16 and GoogLenet
for two reasons. First, these architectures were winners of
past ILSVRC classification task, and they have remained in-
fluential since many other models are finetuned with respect
to them. Also, it would allow direct comparisons with PDA
since these architectures were also used by Zintgraf et al.
for their experiments.

Architecture Input Size Forward Pass Time (ms)
AlexNet 227× 227 342
VGG-16 224× 224 3301

GoogLenet 224× 224 634

Table 1: Inference time for three popular CNN architec-
tures.

Table 1 summarizes the single batch forward pass time for
AlexNet, VGG-16 and GoogLeNet respectively. VGG-16 is
especially computationally expensive in inference. It takes
more than 3 seconds to compute predictions for a batch of
160 input images. Since 501760 samples can be put into
3136 batches exactly, it would take a VGG-16 model ap-
proximately 172 minutes to do all the inference work in or-
der to visualize PDA for a single image, which is too long
to be useful in real scenarios.

Note that there are other operations which we have not
discussed, such as fitting conditional Gaussian distributions
for each patch. However, these distribution parameters can
be computed in advance and loading them would only incur
minimal computational overhead.

2.1. Alternative Formulation of PDA

From the empirical results above, it is obvious that we
cannot achieve a significant speedup without reducing the
number of samples to be taken and the number of forward
passes to be run.

We observe that in PDA the class probability after
marginalizing out a small window of pixels P (c|x\xw) is
approximated by∑

xw

P
(
xw|

_
xw\xw

)
P (c|xw, x\xw), (10)

which is the arithmetic mean of P (c|xw, x\xw). If
we substitute this with the geometric mean, we will get

2a deep learning framework specialized in vision applications:
caffe.berkeleyvision.org

3a library of primitives for deep learning with CUDA support:
developer.nvidia.com/cudnn

∏
xw

P (c|xw, x\xw)
P
(
xw|

_
xw\xw

)
. Since the geometric mean

of a probability distribution is not necessarily itself a prob-
ability distribution, we need to first normalize it:

P (c|x\xw) ≈

∏
xw

P (c|xw, x\xw)
P
(
xw|

_
xw\xw

)

∑
c

∏
xw

P (c|xw, x\xw)
P
(
xw|

_
xw\xw

) .
(11)

For a CNN, the last layer is often a softmax layer:

P (c|x) = softmax
(
zl
)
c

=
exp

(
zlc
)∑

j

exp
(
zlj
) , (12)

where zl is the last layer before softmax and zlj is its j-th
neuron. So,

P (c|x\xw) ≈

≈

∏
xw

softmax
(
zl
)P(xw|

_
xw\xw

)
c∑

j

∏
xw

softmax (zl)
P
(
xw|

_
xw\xw

)
j

=
1∑

j

∏
xw

(
softmax(zl)j
softmax(zl)c

)P(xw|
_
xw\xw

)

=
1∑

j

∏
xw

(
exp(zlj)
exp(zlc)

)P(xw|
_
xw\xw

)

=
1∑

j

∏
xw

exp
(
zlj − zlc

)P(xw|
_
xw\xw

)

=
1∑

j

exp

(∑
xw

P
(
xw|

_
xw\xw

) (
zlj − zlc

))
=

1

∑
j

exp

(∑
xw

P
(
xw|

_
xw\xw

)
zlj

)

exp

(∑
xw

P
(
xw|

_
xw\xw

)
zlc

)

(13)

=

exp

(∑
xw

P
(
xw|

_
xw\xw

)
zlc

)
∑
j

exp

(∑
xw

P
(
xw|

_
xw\xw

)
zlj

)

= softmax

(∑
xw

P
(
xw|

_
xw\xw

)
zl

)
c

(14)

caffe.berkeleyvision.org
developer.nvidia.com/cudnn

Comparing Eq 12 to Eq 14, we can immediately ob-
serve that P (c|x\xw) is roughly equal to applying the
softmax function to the conditional expectation of zl,
E
[
zl|_xw\xw

]
.

What we have just shown is that the conditional probabil-
ity P

(
xw|

_
xw\xw

)
can be pushed into a convolutional net-

work’s decision function if we approximate the arithmetic
mean by the corresponding normalized geometric mean.
This observation leads to

P (c|x\xw) ≈

≈
∑
xw

P
(
xw|

_
xw\xw

)
softmax

(
zl (xw, x\xw)

)
c
≈

≈ softmax

(∑
xw

P
(
xw|

_
xw\xw

)
zl (xw, x\xw)

)
c

.

(15)

The arithmetic mean is now taken in layer l, the last layer
before softmax. It can reduce the number of softmax func-
tions to be evaluated for each patch from S to 1. This is not
so satisfactory because we still have to run S forward passes
for each patch, except that each forward pass stops at layer
l.

As explained previously, a CNN is composed of many
layers of different types, and each layer can be thought of
as a simple function in this composition of functions. So,
to gain further speed-up we need to investigate whether the
arithmetic mean could be taken at lower layers. Specifi-
cally, we are looking for component functions f of a con-
volutional network that satisfies either

E [f (x)] = f (E [x]) (16)

or

GM (f (x)) = f (E [x]) , (17)

where GM denotes (normalized) geometric mean.
If f satisfies Eq. 16, the arithmetic mean can be propa-

gated to a lower layer exactly. If f satisfies Eq. 17, we can
use geometric mean for f as an approximation in the same
way as softmax. In the following, we will investigate linear
components, piece-wise linear components and non-linear
components of a CNN respectively and prove that they pos-
sess the required properties.

Linear Components: Linear transformations constitute
an important part of many classifiers because they allow
more efficient optimisation and inference. The most com-
mon linear transformations in a CNN include convolutional
layers, fully connected layers and batch normalization lay-
ers.

By linearity of expectation, Eq. 16 trivially holds for all
linear transformations, which means the expectation can be

propagated down through these layers without losing accu-
racy.

Piece-wise Linear Components: Piece-wise linear
functions are often used in CNNs as activation functions to
solve the vanishing gradient problem. Examples of this kind
include rectified linear units and maxout units [6]. Also, the
max pooling layer following a convolutional layer is piece-
wise linear.

We first consider the case of a ReLU function. Assume
the input x is Gaussian distributed with mean µ and variance
σ2. This assumption may not hold in reality, but it can give
us some intuition on ReLU’s property. Baldi et al. [3] prove
that if µ = 0,

|E [ReLU (x)]− ReLU (E [x])| = σ√
2π
. (18)

Moreover, if |µ|σ is large,

|E [ReLU (x)]− ReLU (E [x])| ≈ 0. (19)

Eq. 18 and Eq. 19 together indicate that reducing the error
of approximation depends on variance of input being small.
We are going to show that the same conclusion applies to
more general cases.

Specifically,maxout units are capable of representing a
broad class of piece-wise linear functions. A single max-
out unit can approximate arbitrary convex functions. Fig-
ure 8 demonstrates how a maxout unit learns to behave
like ReLU, absolute value function and quadratic function.
Moreover, when applying to a convolutional layer, comput-
ing maxout activation is equivalent to performing max pool-
ing across channels as well as spatial locations. So it covers
the case of pooling layer as well. Let the input x be a d-

Figure 8: a maxout unit learns ReLU, absolute value func-
tion and approximates quadratic function [6]

dimensional vector. A maxout unit h(x) is defined by

h (x) = max
(
w1

Tx+ b1, ..., wk
Tx+ bk

)
(20)

where wi and bi are parameters.
Assume elements of x are independent and Gaussian dis-

tributed. Since the linear combination of independent Gaus-
sian random variables remains Gaussian distributed, we can
write

h (x) = max (x̃1, ..., x̃k) , (21)

where x̃i = wi
Tx+ bi and x̃i ∼ N

(
x̃i|µi, σ2

i

)
.

Since the maximum of a set of convex functions is con-
vex, h(x) is a convex function. Then by Jensen’s inequality,

E [h (x)] = E [max (x̃1, ..., x̃k)] (22)
≥ max (E [x̃1] , ..,E [x̃k]) (23)
= max (µ1, ..., µk) . (24)

On the other hand, again by Jensen’s inequality

exp (tE [h (x)]) ≤ E [exp (th (x))]

= E [exp (tmax (x̃1, ..., x̃k))]

= E [max (exp (tx̃1) , ..., exp (tx̃k))]

≤ E

[∑
i

exp (tx̃i)

]
=
∑
i

E [exp (tx̃i)]

(25)

Since x̃i is Gaussian distributed, by definition of the mo-
ment generating function of Gaussian distributions,

exp (tx̃i) = exp

(
µit+

1

2
t2σ2

i

)
. (26)

Hence,

exp (tE [h (x)]) ≤
∑
i

E [exp (tx̃i)]

=
∑
i

exp

(
µit+

1

2
t2σ2

i

) (27)

Taking the logarithm on both sides, we get

E [h (x)] ≤ 1

t
log
∑
i

exp

(
µit+

1

2
t2σ2

i

)
(28)

We still need an upper bound for the log-sum-exp function,
which can be derived by

exp

(
log
∑
i

exp (xi)

)
=
∑
i

exp (xi)

≤ kmax (exp (x1) , ..., exp (x2))

= k exp (max (x1, ..., xk))

log
∑
i

exp (xi) ≤ max (x1, ..., xk) + log k

(29)

Without loss of generality we can set t = 1. We have the
following bounds for E [h (x)]:

max (µ1, ..., µk) ≤

E [h (x)] ≤ log k + max

(
µ1 +

1

2
σ2
1 , ..., µk +

1

2
σ2
k

)
.

(30)

So the approximation error is

|E [h (x)]− h (E [x])| ≤ log k +
1

2
max

(
σ2
1 , ..., σ

2
k

)
+

+ max (µ1, ..., µk)−max (µ1, ..., µk) =

= log k +
1

2
max

(
σ2
1 , ..., σ

2
k

)
(31)

Eq. 31 shows that the approximation quality for maxout
units depends on the maximum of input variance.

We have shown that the error incurred by pushing the ex-
pectation inside a piece-wise linear function is small given
that the variance of input is small. To find out whether it
holds for a convolutional network, we design the following
experiment.

We first choose an arbitrary image from ILSVRC
dataset. In order to simulate PDA, we fill the patch of size
10 × 10 at the image’s top left corner with samples drawn
from a conditional Gaussian distribution. A total of 160
samples are used to make a mini-batch. After feeding the
batch to a CNN, we collect the outputs of two fully con-
nected layers, which are also inputs to the following ReLU
layers. The distributions of their mean and standard devi-
ation are plotted in histograms 9 and 10. In Figures 9

Figure 9: Distributions of mean and standard deviation for
fully-connected layers in AlexNet.

and 10 we can observe that most neurons have their mean
and standard deviation at around 0. Also, the ratio between
mean and standard deviation is very large, which meets the
requirements for Eq. 18 and Eq. 19 to hold.

Nonlinear Components: The most commonly used
non-linear functions in neural networks are sigmoid func-
tions. It was the default activation function before ReLU
was introduced, and it is still used to output probabilities
for binary classification tasks. To prove that Eq. 17 holds
for sigmoid functions, we just need to show that sigmoid
functions are a special case of softmax functions:

σ (x) =
1

1 + exp (−x)
=

exp (0)

exp (0) + exp (−x)
(32)

Figure 10: Distributions of mean and standard deviation for
fully-connected layers in VGG16.

The observations in this sections lead to a new efficient
algorithm to perform prediction evidence analysis. The
pseudo-code of this method is shown in Algorithm 2.

Algorithm 2 Efficient Prediction Difference Analysis

1: WE = zeros(n ∗ n), counts = zeros(n ∗ n)
2: for every patch xw of size k × k in x do
3: x′ = copy(x)
4: define patch x̂w of size l × l that contains xw
5: x′w = conditional mean of xw given x̂w\xw
6: P (c|x\xw) = P (c|x′)
7: WE[coordinates of xw] += log2 (odds (c|x)) −

log2 (odds (c|x\xw))
8: counts[coordinates of xw] += 1
9: end for

10: return WE/counts

Algorithm 2 has S times fewer forward passes to run than
Algorithm 1. Thus it is expected to be at least S times faster.

3. Evaluation & Results
Quantitative Experiments: We have shown that by

modelling with normalized geometric mean we can prop-
agate the expectation in output space down to the input
space in a layerwise manner. However, it remains a ques-
tion whether normalized geometric mean provides a good
approximation to the arithmetic mean. In this section, we
will conduct both theoretical analysis and quantitative ex-
periments to evaluate the relationship between these two
kinds of mean and how it would affect the approximation
quality.

The inequality of arithmetic mean and geometric mean
imply that the geometric mean of non-negative numbers is
less than or equal to the corresponding arithmetic mean.
This means that geometric mean consistently underesti-
mates arithmetic mean. However, this property does not
hold for normalized geometric mean. For simplicity we
consider the binary classification case.

We have shown earlier that the normalized geometric
mean for sigmoid function is

NGM (σ (x)) =

∏
xi

σ(xi)
P (xi)

∏
xi

σ(xi)
P (xi) +

∏
xi

(1− σ (xi))
P (xi)

= σ

(∑
xi

P (xi)xi

)
(33)

and the arithmetic mean is

AM (σ (x)) =
∑
xi

P (xi)σ (xi) (34)

Since sigmoid function is s-shaped, it is convex on (−∞, 0]
and concave on [0,+∞). By Jensen’s inequality, the nor-
malized geometric mean of sigmoid function is less than or
equal to the arithmetic mean for xi ≤ 0, and it is greater
than or equal to the arithmetic mean for xi ≥ 0.

Moreover, with first order Taylor series expansion,

logGM (σ (x)) = log
∏
xi

σ(xi)
P (xi)

=
∑
xi

P (xi) log σ (xi)

≈
∑
xi

P (xi) (σ (xi)− 1)

= AM (σ (x))− 1

GM (σ (x)) ≈ exp (AM (σ (x))− 1)

≈ AM (σ (x))

(35)

So geometric mean is a first order approximation of arith-
metic mean for sigmoid functions. Based on this, we can
show that normalized geometric mean is also a first order
approximation of the arithmetic mean:

NGM (σ (x)) =

∏
xi

σ(xi)
P (xi)

∏
xi

σ(xi)
P (xi) +

∏
xi

(1− σ (xi))
P (xi)

≈ AM (σ (x))

AM (σ (x)) + (1−AM (σ (x)))

= AM (σ (x))

(36)

It is easy to see that the same argument can be generalized to
softmax functions. Since normalized geometric mean does
not always underestimate arithmetic mean, it is reasonable
to use normalized geometric mean for approximation in our
case.

In order to visualise the empirical approximation quality,
we randomly select a set of 200 images and a fixed patch

location. The arithmetic mean of output probability is ap-
proximated by drawing 500 sample patches at that location,
and the normalized geometric mean of output probability is
obtained by using conditional mean for that location. The
distribution of approximation error is plotted in Figure 11.
Figure 11 shows the differences between arithmetic mean

Figure 11: distribution of approximation error for 200 im-
ages

and normalized geometric mean for the output probabilities
of AlexNet. We can see that for more than half of the in-
put images the approximation error is very close to zero. In
addition to that, as the approximation error increases, fewer
images fall into the corresponding intervals. This suggests
that our alternative formulation gives a good approximation.

Computational Speed: We run experiments to record
the time taken by both algorithms to visualise a single im-
age. In particular, they both use a 10× 10 window size and
an 18 × 18 outer patch size. 10 samples are taken for each
window location by the original algorithm.

The classifiers used are Alexnet, VGG16 and
GoogLenet. The benchmarks are performed using
Caffe with CuDNN on a Tesla K80 GPU. A batch size of
160 is used in forward pass.

Note that all the above details have an influence on the
overall runtime. However, we are interested int the relative
speed-up of our new formulation. Figure 12 summarizes the
benchmarking result for our method vs. [19]. We can see
that our proposed modification results in a 10x speed-up,
which is a significant improvement. Furthermore, a batch
size of 160 samples is the maximum for VGG16 to be fit
in the GPU memory. For smaller models like Alexnet, we
could finish visualisation within minutes by using a much
larger batch size.

Qualitative Experiments: We train a six-layer convolu-
tional model that consists of two convolutional layers, two
max-pooling layers and two fully connected layers. The de-
tailed architecture is illustrated in [1]. This model achieves

0

2000

4000

6000

8000

10000

12000

14000

Alexnet VGG16 GoogLeNet

ru
n

ti
m

e
[s

]

PDA our method

Figure 12: Time required to visualise the decision evidence
for a single image by PDA [19] and our approach.

an accuracy of 99.2% on the MNIST test set.

Figure 13: Visualisations for MNIST dataset. The first col-
umn shows the input images, which are deliberately chosen
to contain digits from zero to nine. The second and fourth
columns show the heatmaps generated by [19] and our ap-
proach respectively. The red regions are input pixels sup-
porting the classification decision, while the blue regions
are pixels against the decision. The colour intensity is pro-
portional to pixel importance. The third and last columns
show the input images overlaid with their heatmaps.

In Figure 13 both algorithms use a window size of 4× 4
since it is verified to produce the smoothest and most in-
terpretable results. Also, marginal sampling is used instead
of conditional sampling, which means we now use P (xw)
to approximate P (xw|x\xw). This is justified for images
from MNIST dataset because their pixels have relatively
weak interdependencies.

ILSVRC experiment: The classifier used for experi-
ments on the ILSVRC 2012 dataset is VGG16, and the pa-
rameters of conditional Gaussian distributions are estimated
from the validation set of ILSVRC 2012, which contains
50000 images.

VGG16 is composed of 16 weight layers and 4 max-
pooling layers. Since the propagation of expectation we
used in deriving our method incurs an approximation er-
ror for each layer, we can expect the accumulated error for
VGG16 to be larger than the 6-layer model in previous sec-
tion. In this case, we would like to figure out whether our
method could still explain the classifier’s decision well.

We use a window size of 10 × 10 and outer patch size
of 18× 18 for both algorithms. For original prediction dif-
ference analysis, we still draw 10 samples for each window
location. Since repeated experiments are computationally
expensive and our purpose is not to find the optimal set of
parameters, we simply adopt the settings from [19].

Figure 14: Visualisations for ILSVRC dataset: class labels
are ”Siberian husky”, ”bea eater”, ”maillot”, ”washer” and
”digital watch” respectively in a top-down order.

Figure 14 shows the visualisation results for five cor-
rectly classified images from ILSVRC dataset. The column

layout is the same as in Figure 13.
In the first row of Figure 14, the input image is a

Siberian husky. We can observe that both algorithms treat
the husky’s ears and nose as strong positive evidence while
treat its forehead as strong negative evidence. However, the
results from [19] is much noisier; the evidence captured by
it spreads over the whole image space, making the heatmap
look chaotic. On the other hand, although our method also
marks regions outside the object as evidence, their pixel in-
tensities are too low to be confused with the main region.
This could help observers to omit unnecessary details and
focus on the most important evidence. The same properties
also appear in other examples. In the case of bee eater, both
algorithms consider the yellow feather beneath the bird’s
beak as positive evidence and its tail as negative evidence,
but the original algorithm also highlights the region outside
the bird’s head. In the case of maillot, the original algorithm
attributes the highest importance to a large region of wall
outside the woman, which is unlikely to help the classifier
make its decision. Furthermore, even inside the objects, the
two algorithms can make different judgements. For exam-
ple, the [19] decides that the chest region of the husky class
votes against this class, but the same region is not consid-
ered important by our approach. Also, the two algorithms
have contrary evidence assignments for feathers on the bee
eater’s back.

The above-mentioned differences in feature heatmaps
could come from two sources. First, it may be the result
of approximation error in our approach. Also, it may be
caused by the sampling approach in original prediction dif-
ference analysis. In order to differentiate these two kinds
of error, we design the following experiment: Intuitively,
if we increase the number of samples taken at each win-
dow location for original prediction difference analysis, the
result would be more accurate and closer to its true value.
However, we cannot afford it because it makes this algo-
rithm even more computationally expensive. So we use a
different approach to demonstrate the error caused by sam-
pling. Now, we replace the conditional mean in our method
with empirical mean of 10 samples instead. The results are
shown in Figure 15.

Figure 15 demonstrates the feature heatmaps generated
by [19] and our sampled approach for the same set of input
images as 14.

First of all, we can immediately notice that the regions
highlighted by the sampled approximation are nearly the
same as those highlighted by original prediction difference
analysis for maillot example. In particular, both algorithms
agree that the wall is positive evidence, while the bed sheet
near the hands is negative evidence. This effect is not so
obvious for other examples, whose feature heatmaps look
almost identical after switching to empirical mean. How-
ever, we can still discover those subtle changes if we take a

Figure 15: the same as Figure 14, except that visualisations
produced by our approach are replaced by their sampled ap-
proximations.

closer look.
For example, the region above bee eater’s head is now

taken as positive evidence by the sampled variant of our
approach. Also, husky’s chest is now taken as negative ev-
idence. These subtleties are difficult to be detected only
because their intensities are very low.

Based on these observations, we propose the following
hypothesis. For [19] and our approach, the difference in
heatmap’s shape is mainly caused by the former’s sampling
behaviour, while the difference in heatmap’s intensity is
mainly caused by the latter’s approximation error.

To further verify the first part of this hypothesis, we ran-
domly pick an image x and fix a window location xw. We
then measure the absolute difference in P (c|x\xw) out-
putted by the two algorithms when different number of sam-
ples are taken at xw. The result is plotted below. We can
see from Figure 16 that the prediction difference fluctuates
intensely when only a few samples are drawn. Since it is
infeasible to draw hundreds of samples in practice, it is ob-
vious that [19] is noisier than our approach.

Invariance Experiment: In the previous section, we
observe that our approach generates clearer visualisations.
However, we cannot affirm that the important regions cap-
tured by it are truly discriminative since there is not a gen-
eral quantitative evaluation of visualisation result. So, what
we would show instead is that our method can capture in-
variant features.

The intuition behind this is that if a CNN generalises
well outside its training data, it must have learned a set

Figure 16: absolute difference in P (c|x\xw) changes with
the number of samples drawn at a particular window loca-
tion xw

of invariant features for an object class. If we can show
that our method captures similar evidence for different im-
ages belonging to the same class, then the evidence is likely
to have strong discriminative power. Figure 17 shows the

Figure 17: Visualisation result for another husky image.

heatmap generated by our approach for another husky im-
age that is correctly classified by VGG16. It is obvious that
the strongest evidence speaking for its class is the husky’s
eye. If we look back at Figure 14, we would see that the
positive evidence found for the first husky image is its ears
and nose. Important features found for these two images do
not seem to agree with each other.

Before explaining the reason, we shall run further exper-
iments regarding feature invariance. This time, we choose
to process the first husky image with operations including
rotation, flipping and cropping to see the changes in the ev-
idence analysis. In Figure 18, the first row is the original
husky image. Row 2 and row 5 are generated by rotation.
Row 3 is generated by flipping, and row 4 is generated by
cropping.

We can observe that all heatmaps except the last one
mark the husky’s ears and nose as strong positive evidence.
This indicates that the presense of ears and nose can indeed
help VGG16 to recognise a husky. As for the last case, when
one ear is occluded, VGG16 marks its eye as positive evi-
dence. This behaviour agrees with Figure 17, in which one
ear is occluded as well.

We can even make a guess about VGG16’s procedure for
recognising huskies. It will first search for the pair of ears
and the nose whenever possible. If one ear is missing, then

Figure 18: Visualisation results on augmented husky im-
ages.

the other one would not be considered important anymore
and VGG16 searches for eyes instead.

Further Simplification: If we ignore log odds, what
our approach essentially does for each window xw is to
measure the difference between P (c|x) and P (c|x′), where
x′ is obtained by replacing xw with its conditional mean.

Let f(x) be the decision function that outputs P (c|x).
Then the first order Taylor expansion of f(x) at x0 is

f (x) ≈ f (x0) + f ′(x0)
T

(x− x0) (37)

If we let x0 be the original image, we can further approxi-
mate our method with the following equation.

P (c|x)− P (c|x′) ≈ f ′(x)
T

(x− x′) (38)

Hence, we can even further simplify Algorithm 2. Pseudo-
code for the simplified algorithm is presented in Algo-
rithm 3. The simplified algorithm now only needs to per-
form one forward pass and one backward pass to visualise
an image.

To illustrate its visualisation quality, we compare it with
our method on ILSVRC dataset. The results are shown be-
low.

Algorithm 3 Further simplification of our approach

1: WE = zeros(n ∗ n), counts = zeros(n ∗ n)
2: grad = ∂

∂xP (c|x)
3: for every patch xw of size k × k in x do
4: x′ = copy(x)
5: define patch x̂w of size l × l that contains xw
6: x′w = conditional mean of xw given x̂w\xw
7: WE[coordinates of xw] += gradT (x− x′)
8: counts[coordinates of xw] += 1
9: end for

10: return WE/counts

Figure 19: Visualisation results by our approach and its sim-
plified version on the same set of input images as Figure 14
and Figure 15

In Figure 19, the middle two columns are feature
heatmaps generated by our approach, and the last two
columns are feature heatmaps generated by its simplified
version.

We can see that the simplified version is capable of cap-
turing some important input features, but the results are
too noisy and lack interpretability. Although it runs sig-
nificantly faster, the decrease in visualisation quality would
reduce its usefulness.

However, the formulation of simplification itself can
help us reason about other visualisation techniques. IN Ta-
ble 2 we compare our method to class saliency map and
deep Taylor decomposition in the aspect of feature impor-
tance evaluation.

In Table 2, f denotes decision function of the classifier

Visualisation Technique Importance of Pixel xi

Class Saliency Map [14] Ri =
∣∣∣ ∂f∂xi

∣∣∣
Deep Taylor Decomposition [8] Ri = ∂f

∂x̃i
· (xi − x̃i)

Our approach Ri = ∂f
∂xi
· (xi − x′i)

Table 2: three visualisation techniques and their evaluation
of pixel importance

to be visualised. x is the input image, x̃ is chosen such that
f(x̃) = 0, and x′i is the conditional mean of xi given its
neighbouring pixels.

We can observe that all three algorithms utilize partial
derivatives of the decision function with respect to input
pixels to evaluate each pixel’s importance. What differenti-
ates them is the weighting rule for pixel contribution. Class
saliency maps [14] treat every pixel equally, so it only uses
gradient information to decide pixel importance. Deep Tay-
lor decomposition [8], on the other hand, first finds a root
point of the decision function. It assigns larger weights to
pixels far away from this root point because those pixels
carry more information about the class identity. Finally, our
approach models the interdependence between local pixels
and assigns larger weights to pixels that are hard to be pre-
dicted from context.

Different weighting rules decide the properties of visual-
isations produced. Equal weighting is built on the assump-
tion that each pixel independently contributes to the clas-
sifier’s decision. This is not true for a CNN, which learns
a hierarchy of representations from complex pixel interac-
tions. Therefore visualisations generated by class saliency
map tend to be noisy. Both Deep Taylor decomposition
and our approach weigh pixels proportionally to their dis-
tances to a base image; the former’s base image encodes
information about decision function, while the latter’s base
image encodes information about distribution of input pix-
els. Since they explain the classifier’s decision from differ-
ent perspectives, their results can be combined in practice
to gain a better interpretation.

4. Conclusion
In this work we have investigated a framework for pre-

dictor evidence analysis. Our work is based on an alterna-
tive formulation for prediction difference analysis [19]. It
is derived by taking advantage of the hierarchical structure
and special properties of component functions of CNNs.
We have run various experiments on different datasets and
classifiers to compare it with other methods aiming to ex-
plain classification decisions. Our proposed method runs
at least 10× faster than [19]. This acceleration comes

from reducing the number of forward passes as well as
avoiding sampling from high dimensional Gaussian distri-
butions. Our method generates more interpretable visual-
isations. This is due to a side-effect of the new formula-
tion. Instead of using sampling to approximate expectation
at output space, the expectation is now taken at input space
and we no longer need to draw samples. So, our evidence
visualisations are less noisy and the evidence captured fo-
cuses more on the objects. Our approach can capture in-
variant class-specific features. If applied to a set of images
belonging to the same class, it allows to find the “decision
rules” of the classifier for recognising that class. Overall,
we also showed that our method can be interpreted as a gra-
dient weighting rule. This interpretation links it with other
gradient-based visualisation techniques, which fall into the
same mathematical framework.

References
[1] Deep MNIST for Experts. https://www.

tensorflow.org/get_started/mnist/pros.
9

[2] S. Bach, A. Binder, G. Montavon, F. Klauschen, K.-R.
Müller, and W. Samek. On pixel-wise explanations for non-
linear classifier decisions by layer-wise relevance propaga-
tion. PLOS ONE, 10(7):e0130140, 2015. 3

[3] P. Baldi and P. Sadowski. The dropout learning algorithm.
Artificial intelligence, 210:78–122, 2014. 6

[4] S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran,
B. Catanzaro, and E. Shelhamer. cudnn: Efficient primitives
for deep learning. arXiv preprint arXiv:1410.0759, 2014. 5

[5] D. Erhan, Y. Bengio, A. Courville, and P. Vincent. Visual-
izing higher-layer features of a deep network. University of
Montreal, 1341:3, 2009. 1

[6] I. J. Goodfellow, D. Warde-Farley, M. Mirza, A. Courville,
and Y. Bengio. Maxout networks. arXiv preprint
arXiv:1302.4389, 2013. 6

[7] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Gir-
shick, S. Guadarrama, and T. Darrell. Caffe: Convolu-
tional architecture for fast feature embedding. In Proceed-
ings of the 22nd ACM international conference on Multime-
dia, pages 675–678. ACM, 2014. 5

[8] G. Montavon, S. Lapuschkin, A. Binder, W. Samek, and K.-
R. Müller. Explaining nonlinear classification decisions with
deep taylor decomposition. Pattern Recognition, 65:211–
222, 2017. 3, 13

[9] A. Nguyen, A. Dosovitskiy, J. Yosinski, T. Brox, and
J. Clune. Synthesizing the preferred inputs for neurons in
neural networks via deep generator networks. NIPS 2016,
2016. 2

[10] A. Nguyen, J. Yosinski, and J. Clune. Deep neural networks
are easily fooled: High confidence predictions for unrecog-
nizable images. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 427–436,
2015. 1

[11] A. Rabinovich, A. Vedaldi, C. Galleguillos, E. Wiewiora,
and S. Belongie. Objects in context. In Computer vision,

https://www.tensorflow.org/get_started/mnist/pros
https://www.tensorflow.org/get_started/mnist/pros

2007. ICCV 2007. IEEE 11th international conference on,
pages 1–8. IEEE, 2007. 4

[12] D. L. Ruderman. The statistics of natural images. Network:
computation in neural systems, 5(4):517–548, 1994. 4

[13] R. R. Selvaraju, A. Das, R. Vedantam, M. Cogswell,
D. Parikh, and D. Batra. Grad-cam: Why did you say that?
visual explanations from deep networks via gradient-based
localization. arXiv preprint arXiv:1610.02391, 2016. 3

[14] K. Simonyan, A. Vedaldi, and A. Zisserman. Deep inside
convolutional networks: Visualising image classification
models and saliency maps. arXiv preprint arXiv:1312.6034,
2013. 1, 2, 13

[15] J. Yosinski, J. Clune, A. Nguyen, T. Fuchs, and H. Lipson.
Understanding neural networks through deep visualization.
In ICML Deep Learning Workshop, 2015. 1, 2

[16] M. D. Zeiler and R. Fergus. Visualizing and understanding
convolutional networks. In European conference on com-
puter vision, pages 818–833. Springer International Publish-
ing, 2014. 2, 3

[17] M. D. Zeiler, G. W. Taylor, and R. Fergus. Adaptive decon-
volutional networks for mid and high level feature learning.
In Computer Vision (ICCV), 2011 IEEE International Con-
ference on, pages 2018–2025. IEEE, 2011. 2

[18] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Tor-
ralba. Learning deep features for discriminative localization.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 2921–2929, 2016. 3

[19] L. M. Zintgraf, T. S. Cohen, T. Adel, and M. Welling. Visu-
alizing deep neural network decisions: Prediction difference
analysis. arXiv preprint arXiv:1702.04595, 2017. 3, 4, 9, 10,
11, 13

