

Language Technologies Institute

Advanced Multimodal Machine Learning

Lecture 2.1: Basic Concepts Louis-Philippe Morency

* Original version co-developed with Tadas Baltrusaitis

- Unimodal basic representations
 - Visual, language and acoustic modalities
- Data-driven machine learning
 - Training, validation and testing
 - Example: K-nearest neighbor
- Linear Classification
 - Score function
 - Two loss functions (cross-entropy and hinge loss)
- Course project team formation

Multimodal Machine Learning

Core Technical Challenges:

Representation Translation Alignment

Fusion Co-Learning

These challenges are non-exclusive.

Unimodal Basic Representations

Unimodal Classification – Language Modality

Word-level classification

Part-of-speech? (noun, verb,...)

Sentiment? (positive or negative)

Named entity ? (names of person,...)

"one-hot" vector $|x_i| =$ number of words in dictionary

Unimodal Classification – Language Modality

Language Technologies Institute

Unimodal Classification – Language Modality

Language Technologies Institute

Unimodal Classification – Acoustic Modality

Digitalized acoustic signal

- Sampling rates: 8~96kHz
- Bit depth: 8, 16 or 24 bits
- Time window size: 20ms
 - Offset: 10ms

Unimodal Classification – Acoustic Modality

Spectogram

Data-Driven Machine Learning

Language Technologies Institute

Carnegie Mellon University

Data-Driven Machine Learning

- **1. Dataset:** Collection of labeled samples D: $\{x_i, y_i\}$
- 2. Training: Learn classifier on training set
- 3. Testing: Evaluate classifier on hold-out test set

Simple Classifier ?

Simple Classifier: Nearest Neighbor

Nearest Neighbor Classifier

- Non-parametric approaches—key ideas:
 - *"Let the data speak for themselves"*
 - "Predict new cases based on similar cases"
 - "Use multiple local models instead of a single global model"
- What is the complexity of the NN classifier w.r.t training set of N images and test set of M images?
 - at training time?
 O(1)
 - At test time?
 O(N)

Simple Classifier: Nearest Neighbor

Distance metrics

L1 (Manhattan) distance:

$$d_1(x_1, x_2) = \sum_j \left| x_1^j - x_2^j \right|$$

L2 (Eucledian) distance:

$$d_2(x_1, x_2) = \sqrt{\sum_{j} \left(x_1^j - x_2^j\right)^2}$$

Which distance metric to use?

First hyper-parameter!

Definition of K-Nearest Neighbor

(a) 1-nearest neighbor

(b) 2-nearest neighbor

(c) 3-nearest neighbor

What value should we set K?

Second hyper-parameter!

Data-Driven Approach

- **1. Dataset:** Collection of labeled samples D: $\{x_i, y_i\}$
- 2. Training: Learn classifier on training set
- 3. Validation: Select optimal hyper-parameters
- 4. Testing: Evaluate classifier on hold-out test set

Evaluation methods (for validation and testing)

- Holdout set: The available data set D is divided into two disjoint subsets,
 - the training set D_{train} (for learning a model)
 - the test set D_{test} (for testing the model)
- Important: training set should not be used in testing and the test set should not be used in learning.
 - Unseen test set provides a unbiased estimate of accuracy.
- The test set is also called the holdout set. (the examples in the original data set *D* are all labeled with classes.)
- This method is mainly used when the data set *D* is large.
- Holdout methods can also be used for validation

Evaluation methods (for validation and testing)

- n-fold cross-validation: The available data is partitioned into *n* equal-size disjoint subsets.
- Use each subset as the test set and combine the rest n-1 subsets as the training set to learn a classifier.
- The procedure is run n times, which give n accuracies.
- The final estimated accuracy of learning is the average of the *n* accuracies.
- 10-fold and 5-fold cross-validations are commonly used.
- This method is used when the available data is not large.

Evaluation methods (for validation and testing)

- Leave-one-out cross-validation: This method is used when the data set is very small.
- Each fold of the cross validation has only a single test example and all the rest of the data is used in training.
- If the original data has *m* examples, this is *m*fold cross-validation
- It is a special case of cross-validation

Linear Classification: Scores and Loss

Language Technologies Institute

Carnegie Mellon University

Linear Classification (e.g., neural network)

- 1. Define a (linear) score function
- 2. Define the loss function (possibly nonlinear)
- 3. Optimization

1) Score Function

Interpreting a Linear Classifier

Some Notation Tricks – Multi-Label Classification

$$W = \begin{bmatrix} W_1 & W_2 & \dots & W_N \end{bmatrix}$$

$$f(x_i; W, b) = Wx_i + b \quad \longrightarrow \quad f(x_i; W) = Wx_i$$

Carnegie Mellon University

Some Notation Tricks

General formulation of linear classifier: $f(x_i; W, b)$

"dog" linear classifier:

$$f(x_i; W_{dog}, b_{dog})$$
 or
 $f(x_i; W, b)_{dog}$ or f_{dog}

Linear classifier for label *j*:

$$f(x_i; W_j, b_j)$$
 or
 $f(x_i; W, b)_j$ or f_j

Interpreting Multiple Linear Classifiers

$$f(x_i; W_j, b_j) = W_j x_i + b_j$$

bird

CIFAR-10 object recognition dataset

Linear Classification: 2) Loss Function

(or cost function or objective)

The loss function quantifies the amount by which the prediction scores deviate from the actual values.

A first challenge: how to normalize the scores?

(or logistic loss)

Logistic function:

$$\sigma(f) = \frac{1}{1 + e^{-f}}$$

1

Carnegie Mellon University

(or logistic loss)

Logistic function:

$$\sigma(f) = \frac{1}{1 + e^{-f}}$$
Logistic regression:
(two classes)

$$p(y_i = "dog" | x_i; w) = \sigma(w^T x_i)$$

$$= true$$
for two-class problem

$$\int_{\sigma(f)}^{\uparrow} \int_{0.5^{-f}}^{1} \int_{0.5^$$

(or logistic loss)

Logistic function:

$$\sigma(f) = \frac{1}{1 + e^{-f}}$$

1

Logistic regression: (two classes)

$$p(y_i = "dog"|x_i; w) = \sigma(w^T x_i)$$

= true

for two-class problem

Softmax function: (multiple classes)

$$p(y_i|x_i;W) = \frac{e^{f_{y_i}}}{\sum_j e^{f_j}}$$

(or logistic loss)

Cross-entropy loss:

$$L_{i} = -\log\left(\frac{e^{f_{y_{i}}}}{\sum_{j} e^{f_{j}}}\right)$$

Softmax function

Minimizing the negative log likelihood.

Second Loss Function: Hinge Loss

(or max-margin loss or Multi-class SVM loss)

$$\begin{array}{c} L_i = \sum_{\substack{j \neq y_i \\ \uparrow \\ \text{example i}}} \max(0, f(x_i, W)_j - f(x_i, W)_{y_i} + \Delta) \\ \uparrow \\ \text{difference between the correct class} \\ \text{score and incorrect class score} \end{array}$$

Second Loss Function: Hinge Loss

(or max-margin loss or Multi-class SVM loss)

$$L_i = \sum_{j \neq y_i} \max(0, f(x_i, W)_j - f(x_i, W)_{y_i} + \Delta)$$

e.g. 10

Example:
$$f(x_i,W) = [13,-7,11]$$
 $y_i = 0$

$$L_i = \max(0, -7 - 13 + 10) + \max(0, 11 - 13 + 10)$$

Two Loss Functions

How to find the optimal W?

ersity

Regularization

$$L_{i} = -\log\left(\frac{e^{f_{y_{i}}(x_{i};W)}}{\sum_{j} e^{f_{j}(x_{i};W)}}\right) + \lambda R(W)$$
Regularization factor

L-2 Norm (Gaussian prior):

 $R(W) = \left\| W \right\|_2$

L-1 Norm (Laplacian prior): $R(W) = \left\|W\right\|_{1}$

Loss function (1)

- Loss function is often made up of three parts $L = L_{data} + \lambda_1 L_{regularization} + \lambda_2 L_{constraints}$
- Data term
 - How well our model is explaining/predicting training data (e.g. crossentropy loss, Euclidean loss)

$$\sum_{i} L_{i} = -\sum_{i} \log \left(\frac{e^{f_{y_{i}}(x_{i};W)}}{\sum_{j} e^{f_{j}(x_{i};W)}} \right)$$

$$\sum_{i} L_{i} = \sum_{i} (y_{i} - f(x_{i}, W))^{2}$$

Loss function (2)

- Loss function is often made up of three parts $L = L_{data} + \lambda_1 L_{regularization} + \lambda_2 L_{constraints}$
- Regularization/Smoothness term
 - Prevent the model from becoming too complex
 - e.g. $||W||_2$ for parameters smoothness
 - e.g. $||W||_1$ for parameter sparsity
- λ_1 is a hyper-parameter
- Optional, but almost never omitted

Loss function (3)

- Loss function is often made up of three parts $L = L_{data} + \lambda_1 L_{regularization} + \lambda_2 L_{constraints}$
- Additional constraints
 - Optional and not always used
 - Help with certain models (e.g. coordinated multimodal representation)
 - e.g. Triplet loss, hinge ranking loss, reconstruction loss
 - Will talk more during multimodal representation lecture

