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Louis-Philippe Morency

Advanced
Multimodal Machine Learning

Lecture 3.1: Optimization and 

Convolutional Neural Networks

* Original version co-developed with Tadas Baltrusaitis



Lecture Objectives

▪ Components of a neural network

▪ Learning the model

▪ Optimization

▪ Gradient computation

▪ Convolutional Neural networks

▪ Convolution and pooling

▪ Architectures

▪ Training tricks
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Linear Classification: 2) Loss Function - RECAP

(or cost function or objective)

𝑓 𝑥𝑖;𝑊

2 (dog) ?

1 (cat) ?

0 (duck) ? 

3 (pig) ?

4 (bird) ?(Size: 32*32*3)

Image

98.7

45.6

-12.3 

12.2

-45.3

Scores

𝑥𝑖

Label

𝑦𝑖 = 2 (𝑑𝑜𝑔)

Loss

𝐿𝑖 = ?

Multi-class problem

How to assign 

only one number 

representing 

how “unhappy” 

we are about 

these scores?

The loss function quantifies the amount by which 

the prediction scores deviate from the actual values.
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First Loss Function: Cross-Entropy Loss - RECAP

(or logistic loss)

Logistic function: 𝜎 𝑓 =
1

1 + 𝑒−𝑓

𝑝 𝑦𝑖 𝑥𝑖;𝑊) =
𝑒
𝑓𝑦𝑖

σ𝑗 𝑒
𝑓𝑗

Softmax function:
(multiple classes)

Logistic regression:
(two classes)

= 𝜎 𝑤𝑇𝑥𝑖𝑝 𝑦𝑖 = "𝑑𝑜𝑔" 𝑥𝑖; 𝑤)
= true
for two-class problem
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Second Loss Function: Hinge Loss

loss due to  

example i sum over all

incorrect labels

difference between the correct class

score and incorrect class score

(or max-margin loss or Multi-class SVM loss)
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Basic Concepts:

Neural Networks



Neural Networks – inspiration

▪ Made up of artificial neurons



Neural Networks – score function

▪ Made up of artificial neurons

▪ Linear function (dot product) followed by a nonlinear 

activation function

▪ Example a Multi Layer Perceptron



Basic NN building block

▪ Weighted sum followed by an activation function

Activation function

Output

Input

Weighted sum

𝑊𝑥 + 𝑏

𝑦 = 𝑓(𝑊𝑥 + 𝑏)



Neural Networks – activation function

▪ 𝑓 𝑥 = tanh 𝑥

▪ Sigmoid - 𝑓 𝑥 = (1 + 𝑒−𝑥)−1

▪ Linear – 𝑓 𝑥 = 𝑎𝑥 + 𝑏

▪ ReLU
▪ Rectifier Linear Units

▪ Faster training - no gradient vanishing

▪ Induces sparsity

𝑓 𝑥 = max 0, 𝑥 ~log(1 + exp(𝑥) )
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Multi-Layer Feedforward Network

𝑊3

𝑊2
𝑊1

𝑦𝑖𝑥𝑖
𝑓2;𝑊2

𝑥 = 𝜎(𝑊2𝑥 + 𝑏2)

𝑦𝑖 = 𝑓 𝑥𝑖 = 𝑓3;𝑊3
(𝑓2;𝑊2

(𝑓1;𝑊1
𝑥𝑖))

𝑓3;𝑊3
𝑥 = 𝜎(𝑊3𝑥 + 𝑏3)

Score function

Activation functions (individual layers)

𝐿𝑖 = (𝑓 𝑥𝑖 − 𝑦𝑖)
2 = (𝑓3;𝑊3

(𝑓2;𝑊2
(𝑓1;𝑊1

𝑥𝑖)) )
2

Loss function (e.g., Euclidean loss)

𝑓1;𝑊1
𝑥 = 𝜎(𝑊1𝑥 + 𝑏1)



Neural Networks inference and learning

▪ Inference (Testing)

▪ Use the score function (y = 𝑓 𝒙;𝑊 )

▪ Have a trained model (parameters 𝑊)

▪ Learning model parameters (Training)

▪ Loss function (𝐿) 

▪ Gradient

▪ Optimization
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Learning model 

parameters



Learning model parameters

▪ We have our training data

▪ X = {𝒙1, 𝒙2, … , 𝒙𝑛} (e.g. images, videos, text etc.)

▪ Y = {𝑦1, 𝑦2, … , 𝑦𝑛} (labels)

▪ Fixed

▪ We want to learn the W (weights and biases) 

that leads to best loss

argmin
𝑊

[𝐿 X, Y,𝑊 ]

▪ The notation means find 𝑊 for which 𝐿 X, Y,𝑊
has the lowest value  
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Optimization



Optimizing a generic function

▪ We want to find a minimum of the loss function

▪ How do we do that?

▪ Searching everywhere (global optimum) is 

computationally infeasible

▪ We could search randomly from our starting point 

(mostly picked at random) and then refine the search 

region – impractical and not accurate

▪ Instead we can follow the gradient



What is a gradient?

▪ Geometrically
▪ Points in the direction of the greatest rate of increase of the function and 

its magnitude is the slope of the graph in that direction

▪ More formally in 1D 

▪ In higher dimensions

➢ In multiple dimension, the gradient is the vector of (partial derivatives) 

and is called a Jacobian.

𝑑𝑓 𝑥

𝑑𝑥
= lim

ℎ→0

𝑓 𝑥 + ℎ − 𝑓 𝑥

ℎ

𝜕𝑓

𝜕𝑥𝑖
(𝑎1, … , 𝑎𝑛) = lim

ℎ→0

𝑓 𝑎1, … , 𝑎𝑖 + ℎ,… , 𝑎𝑛 − 𝑓 𝑎1, … , 𝑎𝑖 , … , 𝑎𝑛
ℎ



Numeric gradient

▪ Can set h to a very low number and compute:

▪ Slow and just an approximation

▪ Need to compute score once (or even twice for 

central limit) for each parameter

▪ Sensitive to choice of ℎ

▪ ℎ needs to be chosen as well - hyperparameter

𝑑𝑓 𝑥

𝑑𝑥
=
𝑓 𝑥 + ℎ − 𝑓 𝑥

ℎ



Analytical gradient

▪ If we know the function and it is differentiable

▪ Derivative/gradient is defined at every point in f

▪ Sometimes use differentiable approximations

▪ Some are locally differentiable

▪ Use Calculus (or Wikipedia)!

▪ Examples:

𝑓(𝑥) =
1

1 + 𝑒−𝑥
;
𝑑𝑓

𝑑𝑥
= (1 − 𝑓 𝑥 )𝑓(𝑥)

𝑓 𝑥 = (𝑥 − 𝑦)2;
𝑑𝑓

𝑑𝑥
= 2(𝑥 − 𝑦)



Analytical gradient

▪ If we know the function and it is differentiable

▪ Derivative/gradient is defined at every point in f

▪ Sometimes use differentiable approximations

▪ Some are locally differentiable

▪ Use Calculus!

▪ Examples:

𝑓(𝑥) =
1

1 + 𝑒−𝑥
;
𝑑𝑓

𝑑𝑥
= (1 − 𝑓 𝑥 )𝑓(𝑥)

𝑓 𝑥 = (𝑥 − 𝑦)2;
𝑑𝑓

𝑑𝑥
= 2(𝑥 − 𝑦)



Which one should we use?

▪ Numeric

▪ Slow

▪ Approximate

▪ Analytical

▪ More error prone to implement (need to get the 

gradient right)

▪ Can use automated tools to help – Theano, 

autograd, Matlab symbolic toolbox

▪ Have both, use analytical for speed but check 

using numeric

▪ Why you should understand gradient

https://medium.com/@karpathy/yes-you-should-understand-backprop-e2f06eab496b
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Neural Networks 

gradient
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Gradient Computation

𝑥

ℎ

𝑦

𝜕𝑦

𝜕𝑥

Chain rule:

𝑦 = 𝑓(ℎ)

ℎ = 𝑔(𝑥)

=
𝜕𝑦

𝜕ℎ

𝜕ℎ

𝜕𝑥



24

Optimization: Gradient Computation

𝑥

ℎ2

𝑦

Multiple-path chain rule:

ℎ3ℎ1

𝜕𝑦

𝜕𝑥
𝑦 = 𝑓(ℎ1, ℎ2, ℎ3)

ℎ𝑗 = 𝑔(𝑥)

=

𝑗

𝜕𝑦

𝜕ℎ𝑗

𝜕ℎ𝑗
𝜕𝑥
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Optimization: Gradient Computation

𝑥2

ℎ2

𝑦

Multiple-path chain rule:

ℎ3ℎ1

𝑥3𝑥1

𝜕𝑦

𝜕𝑥1
=

𝑗

𝜕𝑦

𝜕ℎ𝑗

𝜕ℎ𝑗
𝜕𝑥1

𝜕𝑦

𝜕𝑥2
=

𝑗

𝜕𝑦

𝜕ℎ𝑗

𝜕ℎ𝑗
𝜕𝑥2

𝜕𝑦

𝜕𝑥3
=

𝑗

𝜕𝑦

𝜕ℎ𝑗

𝜕ℎ𝑗
𝜕𝑥3

𝑦 = 𝑓(ℎ1, ℎ2, ℎ3)

ℎ𝑗 = 𝑔(𝒙)
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Optimization: Gradient Computation

𝒙

𝒉

𝑦𝛻𝒙 𝑦 =
𝜕𝑦

𝜕𝑥1
,
𝜕𝑦

𝜕𝑥2
,
𝜕𝑦

𝜕𝑥3

Vector representation:

𝑦 = 𝑓(𝒉)

𝒉 = 𝑔(𝒙)
𝛻𝒙 𝑦 =

𝜕𝒉

𝜕𝒙

𝑇

𝛻𝒉 𝑦

Gradient

“local” Jacobian
“backprop” Gradient

(matrix of size ℎ × 𝑥 computed 

using partial derivatives)



27

Backpropagation Algorithm (efficient gradient)

Forward pass

▪ Following the graph topology, 

compute value of each unit

Backpropagation pass

▪ Initialize output gradient = 1

▪ Compute “local” Jacobian matrix 

using values from forward pass

▪ Use the chain rule:

Gradient “local” Jacobian

“backprop” gradient

= x
𝒙

𝒉𝟏

𝒛 𝒛 = 𝑚𝑎𝑡𝑚𝑢𝑙𝑡(𝒉2,𝑾𝟑)

𝒉1 = 𝑓(𝒙;𝑾𝟏)

𝒉𝟐 𝒉𝟐 = 𝑓(𝒉𝟏;𝑾𝟐)

𝑾𝟑

𝑾𝟐

𝑾𝟏

𝐿

𝑦

𝐿 = −𝑙𝑜𝑔𝑃(𝑌 = 𝑦|𝒛)
(cross-entropy)

▪ Why is this rule important?
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Computational Graph: Multi-layer Feedforward Network

𝒉 = 𝑓(𝒙;𝑾)𝒉

Computational unit:

▪ Sigmoid unit:

𝒙
𝑾

* exp-1*

ℎ𝑗 = (1 + 𝑒−𝑊𝑗𝒙)−1

+1 1/x

𝒉

Differentiable “unit” function!
(or close approximation to compute “local Jacobian)

𝒙

𝒉𝟏

𝒛 𝒛 = 𝑚𝑎𝑡𝑚𝑢𝑙𝑡(𝒉2,𝑾𝟑)

𝒉1 = 𝑓(𝒙;𝑾𝟏)

𝒉𝟐 𝒉𝟐 = 𝑓(𝒉𝟏;𝑾𝟐)

𝑾𝟑

𝑾𝟐

𝑾𝟏

𝐿

𝑦

𝐿 = −𝑙𝑜𝑔𝑃(𝑌 = 𝑦|𝒛)
(cross-entropy)

• Multiple input

• One output

• Vector/tensor
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Gradient descent



How to follow the gradient

▪ Many methods for optimization

▪ Gradient Descent (actually the “simplest” one)

▪ Newton methods (use Hessian – second derivative)

▪ Quasi-Newton (use approximate Hessian)

▪ BFGS

▪ LBFGS

▪ Don’t require learning rates (fewer hyperparameters)

▪ But, do not work with stochastic and batch methods so 

rarely used to train modern Neural Networks

▪ All of them look at the gradient

▪ Very few non gradient based optimization methods
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Parameter Update Strategies

Gradient descent:

𝜃(𝑡+1) = 𝜃𝑡 − 𝜖𝑘𝛻𝜃𝐿

New model 

parameters
Previous 

parameters
Learning rate

at iteration k

Gradient of our loss function

𝜖𝑘 = 1 − 𝛼 𝜖0 + 𝛼𝜖𝜏
Learning rate

at iteration k
Decay Initial learning rate

Decay learning rate linearly until iteration 𝜏

▪ Stochastic (“batch”)

▪ with momentum

▪ AdaGrad

▪ RMSProp

Extensions:



Vanilla Gradient Descent

▪ Compute gradient with respect to loss and keep 

updating weights till convergence

while not converged: 

# compute gradients

weights_grad = compute_gradient(loss_fun, data, weights) 

# perform parameter update

weights += - step_size * weights_grad

# (optionally update step size)



Batch (stochastic) gradient descent

▪ Using all of data points might be tricky when 

computing a gradient

▪ Uses lots of memory and slow to compute

▪ Instead use batch gradient descent

▪ Take a subset of data when computing the gradient

while not converged: 

# Shuffle data

data = randomize(data)

# Split data into batches and update each batch individual

for data_batch in data:

weights_grad = backpropagation(loss_fun, data_batch , weights) 

# perform parameter update

weights += - step_size * weights_grad

Epoch

Iteration



Convex vs. non-convex functions and local minima

▪ Convex – gradient descent will 

lead to a perfect solution (global 

optimum)

▪ Logistic regression

▪ Least squares models

▪ Support vector machines

▪ Non-convex – impossible to 

guarantee that the solution is the 

best – will lead to local-minima

▪ Neural networks

▪ Various graphical models
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Potential issues

▪ Problems that can occur?

▪ Getting stuck in local minima (global 

minimum is never found) (a)

▪ Getting stuck on flat plateaus of the 

error-plane (b)

▪ Oscillations in error rates (c)

▪ Learning rate is critical (d)

Flat  plateau

Global minimumGlobal minimum

Local minimum

Local minimum

Some observations:
- Small steps are likely to lead to 

consistent but slow progress. 

- Large steps can lead to better progress 

but are more risky. 

- Note that eventually, for a large step size 

we will overshoot and make the loss 

worse. 
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Interpreting learning rates
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Convolutional

Neural Networks
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A Shortcoming of MLP

2 Data Points – detect which head is up!

Easily modeled using one neuron. 

What is the best neuron to model this? 

This head may or may not be up – what 

happened?

Solution: instead of modeling the entire image, 

model the important region.



Why not just use an MLP for images (1)?

▪ MLP connects each pixel in an image to each 

neuron

▪ Does not exploit redundancy in image structure

▪ Detecting edges, blobs

▪ Don’t need to treat the top left of image 

differently from the center

▪ Too many parameters 

▪ For a small 200 × 200 pixel RGB image the first 

matrix would have 120000 × 𝑛 parameters for 

the first layer alone



Why not just use an MLP for images (2)?

▪ Human visual system works in a filter 

fashion

▪ First the eyes detect edges and change 

in light intensity

▪ The visual cortex processing performs 

Gabor like filtering

▪ MLP does not exploit translation 

invariance

▪ MLP does not necessarily encourage 

visual abstraction



Why use Convolutional Neural Networks

▪ Using basic Multi Layer 

Perceptrons does not work 

well for images

▪ Intention to build more abstract 

representation as we go up 

every layer

Input pixels

Edges/blobs

Parts

Objects



Convolutional Neural Networks

▪ They are everywhere that uses representation learning with 

images

▪ State of the art results – object recognition, face recognition, 

segmentation, OCR, visual emotion recognition

▪ Extensively used for multimodal tasks as well



Main differences of CNN from MLP

▪ Addition of:

▪ Convolution layer

▪ Pooling layer

▪ Everything else is the same (loss, score and 

optimization)

▪ MLP layer is called Fully Connected layer
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Convolution



Convolutional definition

▪ A basic mathematical operation (that given two 

functions returns a function)

(𝑓 ∗ 𝑔) 𝑛 ≝ 

𝑚=−∞

∞

𝑓 𝑚 𝑔[𝑛 − 𝑚]

▪ Have a continuous and discrete versions (we 

focus on the latter)



Convolution in 1D

▪ Example

▪ 𝑓 = … , 0,1,1,1,0,0,…

▪ 𝑔 = … , 0,1,−1,0…

▪ 𝑓 ∗ 𝑔 = [… , 0,1,0,0, −1,0,0, … ]

(𝑓 ∗ 𝑔) 𝑛 ≝ 

𝑚=−∞

∞

𝑓 𝑚 𝑔[𝑛 − 𝑚]



Convolution in practice

▪ In CNN we only consider functions with limited 

domain (not from −∞ to ∞)

▪ Also only consider fully defined (valid) version

▪ We have a signal of length N

▪ Kernel of length K

▪ Output will be length N − K + 1

▪ 𝑓 = 1,2,1 , 𝑔 = 1,−1 , 𝑓 ∗ 𝑔 = [1,−1]



Convolution in practice

▪ If we want output to be different size we can add padding 

to the signal

▪ Just add 0s at the beginning and end

▪ 𝑓 = 0,0,1,2,1,0,0 , 𝑔 = 1,−1 , 𝑓 ∗ 𝑔 = [0,1,1,−1,−1,0]

▪ Also have strided convolution (the filter jumps over pixels 

or signal)

▪ With stride 2

▪ 𝑓 = 0,0,1,2,1,0,0 , 𝑔 = 1,−1 , 𝑓 ∗ 𝑔 = [0,1, −1,0]

▪ Why is this a good idea? Where can this fail?



Convolution in 2D

▪ Example of image and a kernel

∗ =

Convolution

kernel

Response map



Convolution in 2D

∗ =

Convolution

kernels

Response maps



Convolution intuition

▪ Correlation/correspondence 

between two signals

▪ Template matching

▪ Why are we interested in 

convolution

▪ Allows to extract structure from 

signal or image

▪ A very efficient operation on signals 

and images



Sample CNN convolution

▪ Great animated visualization of 2D convolution

▪ http://cs231n.github.io/convolutional-networks/

http://cs231n.github.io/convolutional-networks/
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Convolution with 

MLP



Fully connected layer

▪ Weighted sum followed by an activation function

Activation function

Output

Input

Weighted sum

𝑊𝑥 + 𝑏

𝑦 = 𝑓(𝑊𝑥 + 𝑏)



Convolution as MLP (1)

▪ Remove activation

Input

Weighted sum

𝑊𝑥 + 𝑏 𝒘𝟏 𝒘𝟐 𝒘𝟑Kernel

𝑦 = 𝑊𝑥 + 𝑏



Convolution as MLP (2)

▪ Remove redundant links making the matrix W sparse 

(optionally remove the bias term)

Input

Weighted sum

𝑊𝑥 𝒘𝟏 𝒘𝟐 𝒘𝟑Kernel

𝑦 = 𝑊𝑥



Convolution as MLP (3)

▪ We can also share the weights in matrix W not to do 

redundant computation

Input

Weighted sum

𝑊𝑥 𝒘𝟏 𝒘𝟐 𝒘𝟑Kernel

𝑦 = 𝑊𝑥



How do we do convolution in MLP recap

▪ Not a fully connected layer 

anymore

▪ Shared weights

▪ Same colour indicates same 

(shared) weight

𝒘𝟏 𝒘𝟐 𝒘𝟑

𝑊 =

𝑤1 𝑤2 𝑤3

0 𝑤1 𝑤2

0 0 𝑤1

⋯
0 0 0
0 0 0
0 0 0

⋮ ⋱ ⋮
0 0 0
0 0 0
0 0 0

⋯
𝑤3 0 0
𝑤2 𝑤3 0
𝑤1 𝑤2 𝑤3



More on convolution

▪ Can expand this to 2D

▪ Just need to make sure to link the right 

pixel with the right weight

▪ Can expand to multi-channel 2D

▪ For RGB images

▪ Can expand to multiple kernels/filters

▪ Output is not a single image anymore, 

but a volume (sometimes called a 

feature map)

▪ Can be represented as a tensor (a 3D 

matrix)

▪ Usually also include a bias term and an 

activation
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Pooling layer



Pooling layer

▪ Image subsampling



Pooling layer motivation

▪ Used for sub-sampling

▪ Allows summarization of response

▪ Helps with translational invariance

▪ Have filter size and stride (hyperparameters)



Pooling layer gradient

1. Record during forward pass which pixel was picked and 

use the same in backward pass

2. Pick the maximum value from input using a smooth and 

differentiable approximation

𝑦 =
σ𝑖=1
𝑛 𝑥𝑖𝑒

𝛼𝑥𝑖

σ𝑖=1
𝑛 𝑒𝛼𝑥𝑖
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Putting it all 

together



Common architectures

▪ Start with a convolutional layer follow by non-

linear activation and pooling

▪ Repeat this several times

▪ Follow with a fully connected (MLP) layer



VGGNet model

▪ Used for object classification task

▪ 1000 way classification task – pick one

▪ 138 million params
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VGGNet Convolution Kernels
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VGGNet Response Maps (aka Activation Maps)

Convolution kernels (3x3)

Response Maps
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CAM: Class Activation Mapping [CVPR 2016]
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Grad-CAM
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Visualizing the Last CNN Layer: t-sne

Embed high dimensional data 

points (i.e. feature codes) so 

that pairwise distances are 

conserved in local 

neighborhoods. 

Alex Net



Training tricks

▪ Data augmentation (Create more data)

▪ Image scaling

▪ Shifting

▪ Rotation

▪ Mirroring

▪ Optimization

▪ Dropout

▪ Regularization

▪ Many more tricks/tips that we will discuss in Week 8



Fine tuning for specific tasks

▪ Often start with an existing architecture and an 

already trained network (for example AlexNet or 

VGGNet for object recognition)

▪ Discard the final layer score function and 

replace with your own (FC7)

▪ Perform gradient decent on it

▪ Nice thing about neural networks is that we can 

continue training them with new data



Other popular architectures

▪ LeNet – an early 5 layer architecture for 

handwritten digit recognition

▪ DeepFace – Facebook’s face recognition CNN

▪ AlexNet – Object Recognition

▪ Already trained models for object recognition 

can be found online
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Residual Networks

▪ Adding residual connections
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Googlenet

▪ Using residual blocks

▪ Loss function in different layers of the 

network
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Densely Connected CNN

▪ Connections between all the layers


