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Lecture Objectives

= Components of a neural network
= |Learning the model

= Optimization

= Gradient computation
= Convolutional Neural networks

= Convolution and pooling

= Architectures
= Training tricks
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Linear Classification: 2) Loss Function - RECAP
(or cost function or objective)

Scores Label - |LOSS
flx; W) yi=2(dog) Ly =7
image X 0 (duck)? -12.3 How to assign
1 (cat) ? 45.6 only one number
2 (dog) ? 98.7 representing
_ 3 (pig) ? 12.2 how “unhappy”
(Size: 32+32+3) 4 (bird) ? -45.3 we are about
Multi-class problem these scores?

The loss function quantifies the amount by which
the prediction scores deviate from the actual values.
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First Loss Function: Cross-Entropy Loss - RECAP

(or logistic loss)

Logistic function:

1
U(f)=1+e‘f

Logistic regression:  p(y; = "dog"|x;w) = o(wTx;)
(two classes) = true

for two-class problem

el

l

Softmax function: _ _
(multiple classes) pilx; W) = Y. el
J
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Second Loss Function: Hinge Loss
(or max-margin loss or Multi-class SVM loss)

L; Zma’x(()) f(xiaw)j _ f(wi’W)yi —'_A)
T I7Y; T
lossdueto X

example i sum over all
Incorrect labels

difference between the correct class
score and incorrect class score

1 L 1L delta
I E b +

scores for other classes score for correct class

5
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Basic Concepts:
Neural Networks



Neural Networks — inspiration

= Made up of artificial neurons

impulses carried
toward cell body

branches

dendrites of axon

axon

nucleus terminals

impulses carried

wo
away from cell body

*@® synapse
axon from a neuron ™
Wy

/" cell body

i (Z w;T; + b)

w11
> w;x; +b >
zi: Sa output axon
activation
function

W22
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Neural Networks — score function

= Made up of artificial neurons

= Linear function (dot product) followed by a nonlinear
activation function

= Example a Multi Layer Perceptron

input layer

hidden layer 1 hidden layer 2
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Basic NN building block

= Weighted sum followed by an activation function

Input Xn ] e e 'x? ;x; X

Weighted su
Wx+b

Activation functionl J |
Output (%) | »:Vz ) ()

y = f(Wx + b)
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Neural Networks — activation function

= f(x) =tanh(x)

= Sigmoid - f(x) = (1 + e ) ! T

= Linear—f(x) =ax+»b

0
sigmoid

= RelU f(x)=max(0,x)~log(1l+ exp(x))
= Rectifier Linear Units

= Faster training - no gradient vanishing
= Induces sparsity

0
-4 -1 0 1
RelLU (soft and hard)
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Multi-Layer Feedforward Network

Activation functions (individual layers)
fiw, (x) = o(Wix + by)
fow, (x) = a(Wox + by) 70
faw, (x) = o(W3x + b3)

Score function

yi = f(x;) = f3;W3 (fz;wz (fl;w1 (x:)))

4
®
I

hidden layer 1 hidden layer 2

D
%
X

N
.t
N
> (‘\‘4
e\
OO

b

%
24

input layer

Loss function (e.g., Euclidean loss)

L = (f(xp) — }’i)z — (fs;w3 (fz;w2 (f1;w1(xi))))2
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Neural Networks inference and learning

» Inference (Testing)
= Use the score function (y = f(x; W))
= Have a trained model (parameters )
= Learning model parameters (Training)
= Loss function (L)
= Gradient
= Optimization
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Learning model
parameters
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Learning model parameters

= \WWe have our training data
= X ={xq,x,,..,X,} (€.9. IMages, videos, text etc.)

" Y ={y, Vs, .., ¥} (Iabels)
= Fixed

= We want to learn the W (weights and biases)
that leads to best loss
argmin[L(X,Y, W)]
w

= The notation means find W for which L(X,Y, W)
has the lowest value
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Optimization
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Optimizing a generic function

= \WWe want to find a minimum of the loss function

= How do we do that?

= Searching everywhere (global optimum) is
computationally infeasible

= We could search randomly from our starting point
(mostly picked at random) and then refine the search
region — impractical and not accurate

* |nstead we can follow the gradient
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What is a gradient?

= Geometrically

= Points in the direction of the greatest rate of increase of the function and
its magnitude is the slope of the graph in that direction

= More formally in 1D

af() . flr+h) = f@) LN
——— = lim A
dx h—0 h -
* In higher dimensions
of _ flaq,...,a; +h,..,a,) — f(aq, ...,a; ..., a,)
a_xi(al' vy Qp) = lim P

» In multiple dimension, the gradient is the vector of (partial derivatives)
and is called a Jacobian.
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Numeric gradient

= Can set h to a very low number and compute:

df(x)  f(x+h)—f(x)
dx h

= Slow and just an approximation

= Need to compute score once (or even twice for
central limit) for each parameter

= Sensitive to choice of h
* h needs to be chosen as well - hyperparameter
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Analytical gradient

= |f we know the function and it is differentiable
= Derivative/gradient is defined at every point in f
= Sometimes use differentiable approximations
= Some are locally differentiable

= Use Calculus (or Wikipedia)!

= Examples:

__ Yd_ 4
FO) = 1= 7 = (L= FEDf )

d
FO) = (x = 3% = 20— y)
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Analytical gradient

= |f we know the function and it is differentiable
= Derivative/gradient is defined at every point in f
= Sometimes use differentiable approximations
= Some are locally differentiable

= Use Cal
= Example

f(

y = x|

f(

42 Y 2 4
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Which one should we use?

= Numeric

= Slow

= Approximate
= Analytical

= More error prone to implement (need to get the
gradient right)

= Can use automated tools to help — Theano,
autograd, Matlab symbolic toolbox

* Have both, use analytical for speed but check
using numeric

= \Why you should understand gradient
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https://medium.com/@karpathy/yes-you-should-understand-backprop-e2f06eab496b

Neural Networks
gradient
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Gradient Computation

Chain rule:

dy 0dydh
dx O0hox y) y=f(h
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Optimization: Gradient Computation

Multiple-path chain rule:

_ = - h,h,h
Y E 6hj0x y f(hy, by, h3)
J

b = g(x)
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Optimization: Gradient Computation

Multiple-path chain rule:

d0x4 — 0h; 0x;
J

0x, 4L Oh;0x,
J

0 y = f(hy, hy, h3)

0x3 L Oh; 0x;
J
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Optimization: Gradient Computation

Vector representation:

dy 0y 0y
= = h
X axl’axz'axJ y)y=fh)
Gradient
3 T
\ oh h) h=g(x)
V,y = a Vi v (
\
/ “backprop” Gradient

“local” Jacobian @

(matrix of size |h| X |x| computed
using partial derivatives)
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Backpropagation Algorithm (efficient gradient)

L =—logP(Y =vy|z)
(cross-entropy)

Forward pass

= Following the graph topology,

compute value of each unit z = matmult(h,, W3)

Backpropagation pass
= |nitialize output gradient =1 @ hy, = f(hy; W5)

= Compute “local” Jacobian matrix
using values from forward pass

= Use the chain rule:

Gradient = “local” Jacobian X

“backprop” gradient
= Why is this rule important?

27
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Computational Graph: Multi-layer Feedforward Network

Computational unit:

« Multiple input
h=f(x;W) | - One output

* Vector/tensor

L =—logP(Y =vy|z)
(cross-entropy)

z = matmult(h,, W3)

= Sigmoid unit:

gé = (14 i) (hy) hy = f(hy; W)

_( (hy) hy = f(a;Wy)
"IO-0-0-06 1

Differentiable “unit” function!

(or close approximation to compute “local Jacobian)

28

Language Technologies Institute



Gradient descent
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How to follow the gradient

= Many methods for optimization
= Gradient Descent (actually the “simplest” one)
= Newton methods (use Hessian — second derivative)

= Quasi-Newton (use approximate Hessian)
= BFGS
= LBFGS
= Don'’t require learning rates (fewer hyperparameters)

= But, do not work with stochastic and batch methods so
rarely used to train modern Neural Networks

= All of them look at the gradient
= Very few non gradient based optimization methods
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Parameter Update Strategies

Gradient descent:

/9 (t+1) T/Ht — €y VQL —> Gradient of our loss function

New model Previous
parameters parameters

€Ex = (1 T/a)e\? + HE = Decay learning rate linearly until iteration ¢

Decay Initial learning rate

Extensions: = Stochastic (“batch”)
= with momentum
= AdaGrad
= RMSProp
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Vanilla Gradient Descent

= Compute gradient with respect to loss and keep
updating weights till convergence

while not converged:
# compute gradients
weights_grad = compute_gradient(loss_fun, data, weights)
# perform parameter update
weights += - step_size * weights_grad

# (optionally update step size)

Language Technologies Institute



Batch (stochastic) gradient descent

= Using all of data points might be tricky when
computing a gradient
= Uses lots of memory and slow to compute

* Instead use batch gradient descent
= Take a subset of data when computing the gradient

while not converged:
# Shuffle data —
data = randomize(data)
# Split data into batches and update each batch individual
for data_batch in data: — E p o) Ch
weights_grad = backpropagation(loss_fun, data_batch , weights)

|tel’ati0n # perform parameter update
weights += - step_size * weights_grad )
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Convex vs. non-convex functions and local minima

= Convex — gradient descent will
lead to a perfect solution (global
optimum)
= Logistic regression et
= Least squares models U
= Support vector machines
= Non-convex — impossible to n (o
guarantee that the solution is the
best — will lead to local-minima

= Neural networks
= Various graphical models
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Potential issues

= Problems that can occur?
= Getting stuck in local minima (global
minimum is never found) (a)

= Getting stuck on flat plateaus of the
error-plane (b)

lobal mini = Oscillations in error rates (c)
Global minimum | Global minimum - Learning rate is critical (d)

Wij wij

Local minimum Flat plateau

b o el & Some observations:
- Small steps are likely to lead to
consistent but slow progress.
A - Large steps can lead to better progress
but are more risky.
- Note that eventually, for a large step size
Local minimum we will overshoot and make the loss
worse.
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Interpreting learning rates

loss

low learning rate

high learning rate

\‘

good learning rate

Language Technologies Institute
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Convolutional
Neural Networks
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A Shortcoming of MLP

2 Data Points — detect which head is up!
@ @ Easily modeled using one neuron.

What is the best neuron to model this?

This head may or may not be up — what
happened?

Solution: instead of modeling the entire image,
model the important region.

38
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Why not just use an MLP for images (1)?

= MLP connects each pixel in an image to each

neuron
= Does not exploit redundancy in image structure i Sl N 4 I J
= Detecting edges, blobs - ./ N
= Don’t need to treat the top left of image
differently from the center # ' / \\

= Too many parameters

= Forasmall 200 x 200 pixel RGB image the first
matrix would have 120000 x n parameters for
the first layer alone
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Why not just use an MLP for images (2)?

= Human visual system works in a filter
fashion
= First the eyes detect edges and change
in light intensity
» The visual cortex processing performs
Gabor like filtering

= MLP does not exploit translation
Invariance

= MLP does not necessarily encourage
visual abstraction
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Why use Convolutional Neural Networks

» Using basic Multi Layer
Perceptrons does not work
well for images

= |ntention to build more abstract
representation as we go up
every layer

Edges/blobs

Input pixels
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Convolutional Neural Networks

= They are everywhere that uses representation learning with
Images

= State of the art results — object recognition, face recognition,
segmentation, OCR, visual emotion recognition

= Extensively used for multimodal tasks as well

. Cat mmiﬁmtﬁn!so‘
: feature maps 1. maps 168055
. 6228x28

g2: t. ma r 5. layer e,
iy r r\\vzo aye F& layor C‘>gT°UT

— |
| Full condection | Gaussian connections

Convolutions Subsemplng Convolutions ~ Subsamplng Full connection

: -
.){':""\-\.._
e s

o
dense | densel

b

|
:“ég
¢
I
;

- e T2 ‘ = \ ¢
128 P ; - ~ . z\. |
AT y s >~ \ =4 \ | »n
N, ) 2 7 i_ . - ~ & i e e 2
i il F i ik v | = - 2 [~3 - R ‘. A ,:‘T . ? 2
Y Ft A P | AWiES 2 LI - T AR ¢ N g £
e e R — AEer )
At H 182 - -
ks C1: M2 €3 L4 Ls: L6 F7: F8:
alista_Flockhart_0002.jpg Frontalization! 22111163 16x9x9x16  16xxTx16  16x5x5x16 40304
3 @ @142x142 @ @ [
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Main differences of CNN from MLP

= Addition of:

= Convolution layer
= Pooling layer
= Everything else is the same (loss, score and
optimization)
= MLP layer is called Fully Connected layer

depth
(SR height
_ Q0000
-~ ~00000H)
..".»
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Convolution
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Convolutional definition

= A basic mathematical operation (that given two
functions returns a function)

(f * 9)ln Zf m]

m=—oo
= Have a continuous and discrete versions (we
focus on the latter)
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Convolution in 1D

= Example
= £=1..,0,1,1,1,0,0,...]

s g=1[.,01,-1,0..]

* frg=1.,0100-100,..]

(gl = ) fimlgln—m)
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Convolution in practice

= In CNN we only consider functions with limited
domain (not from —oo to o)
= Also only consider fully defined (valid) version
= We have a signal of length N
= Kernel of length K
= Qutput will be length N - K+ 1

= f=1[121],g=1[1,-1], f g =[1,—1]
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Convolution in practice

= |f we want output to be different size we can add padding
to the signal
= Just add Os at the beginning and end

= £=100,012100],g=[1,-1], f+g =[0,1,1,-1,-1,0]

= Also have strided convolution (the filter jumps over pixels
or signal)
= With stride 2
= £=10,01,21,0,0],g =1[1,-1], f *g = [0,1,—1,0]
= Why is this a good idea? Where can this fail?
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Convolution in 2D

Convolution
kernel

Response map
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Convolution in 2D

Convolution
kernels

Response maps
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Convolution intuition
= Correlation/correspondence
between two signals

= Template matching
= Why are we interested In
convolution

= Allows to extract structure from
signal or image

= Avery efficient operation on signals
and images
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Sample CNN convolution

= Great animated visualization of 2D convolution
= http://cs231n.github.io/convolutional-networks/

Input Volume (+pad 1) (7x7x3) Filter WO (3x3x3) Filter W1 (3x3x3) Output Volume (3x3x2)
x[:,:,0] w0[z,:,0 wl[:z,:,0] o[:,:,0]
000000 0 o T 101 06 6
0 2 y//o 0 [0 i B S[6]s
o 1 [T]zoJo o N 00 1 S[F)=
o o2tz ]o o WO, 1 wil:,:,1] ol:,:,1]
0027/,2,1/0/-11 10 1 G|H|=
8 5 23 5N OB Fl 6 1 A1 Al =i [ = 12 2
000 0 0 0 0 ML -1 N i B 33 1
wl 1 wol:, : wil:,:,2]

000 0 00 Y 9 e

T T T 0 Jfo il (Gl BT

o 1 [T]TT 0 v T 00 |G

EIR N P% G ias b0 xixl) Bias bl (1x1x1)

0 1 (211 |2 0 B0[:/:,0] bl[:,:, 0]

ol 29 o7 20 |1 0 ! 0

000 0 [

00 0 0

00 2 0

0o 2 [T]zHo]e o

o 1 [T o]0 A

0 2 2 |2 0

B El G B E

000000 0
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http://cs231n.github.io/convolutional-networks/

Convolution with
MLP
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Fully connected layer

Input "'xz
Weighted ¥A§£ (
eIer+ bsum ."4: \\ J

JRIN
Activation function " ) . . .
Output
) (e () ()

y=f(Wx+b)
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Convolution as MLP (1)

= Remove activation

Input '” <) (o
Weia/rl:ef ;um
.//\ §

1&.

& Kernel |wy |wy | Wy

y=Wx+b (n) () (n)(n
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Convolution as MLP (2)

Remove redundant links making the matrix W sparse
(optionally remove the bias term)

Input

Kernel |wy |wy | Wy
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Convolution as MLP (3)

= \We can also share the weights in matrix W not to do
redundant computation

Input

Weighted sum
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How do we do convolution in MLP recap

= Not a fully connected layer
anymore

= Shared weights
=  Same colour indicates same

(shared) weight
Wiy Wy W3 O 0 O
O wg w, -« 0 0 0 \
0 0 w 0 0 0

W = . *

0 0 0 ws 0 0
\ 0 0 0 Wy  Ws o/
0O 0 O Wy Wy Wg

Weighted sum

Activation

L) e

OO
() ()

Language Technologies Institute



More on convolution

Can expand this to 2D

= Just need to make sure to link the right
pixel with the right weight

= Can expand to multi-channel 2D
= For RGB images
= Can expand to multiple kernels/filters

= Qutput is not a single image anymore,
but a volume (sometimes called a
feature map)

= Can be represented as a tensor (a 3D
matrix)

= Usually also include a bias term and an
activation

Language Technologies Institute
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Pooling layer
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Pooling layer

= Image subsampling

224x224x64 _ _
112511264 Single depth slice
ool Jl111]2]4
max pool with 2x2 filters
oMl 7 | 8 and stride 2 6 | 8
l T 3 | 2 [EimEG 3| 4
1 | 2 IS
224 . - 112
~8_ downsampling "
112 y
224
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Pooling layer motivation

= Used for sub-sampling
= Allows summarization of response

= Helps with translational invariance
= Have filter size and stride (hyperparameters)

g i Single depth slice
112x112x64 A
pool 11124
max pool with 2x2 filters
S5R6N 7 | 8 and stride 2 6 |8
| 3 | 2 [NINES 3|4
e downsampling e 1 2 3|4
112
224 >

y
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Pooling layer gradient

1. Record during forward pass which pixel was picked and
use the same in backward pass

2. Pick the maximum value from input using a smooth and
differentiable approximation

n paX;
Softmax . Zl:lxle

y B Z?:l ea.X-l

0
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Putting 1t all
together
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Common architectures

= Start with a convolutional layer follow by non-
Inear activation and pooling

= Repeat this several times
= Follow with a fully connected (MLP) layer

RELU RELU RELU RELU RELU RELU

CONV lCONVl CONVlCONVl CONVlCONVl
by '
=

'
=
=
.

truck

ship

horse
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VGGNet model

» Used for object classification task
= 1000 way classification task — pick one
= 138 million params

224 224 x 3 234 x 224 x Gid

112 =112 = 128

L= D6 = 206
f 28 x 28 x 512 =T %512

Jﬁ“*ﬁ”ﬂ“ ﬁ]”l 1%1x4096 1% 1% 1000

B convolution4 RelLLT

A max pooling
fully connected4+Heal.l

| softmeax
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VGGNet Convolution Kernels

' _ Linearly
e [ e e 1 e
classifier

VGG-16 Convi 1
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VGGNet Response Maps (aka Activation Maps)

Convolution kernels (3x3)

Al sl e WL T
HOERESEFIET"ORERE
EANEFENEEAsE =Mh.AF
TR dEFRFEACEreTa

Response Maps

0 100 200
0 100 200
0 100 200
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CAM: Class Activation Mapping [CVPR 2016]

3 W-
// 8\1\' Australian

terrier
I O/ W
\/ 11
/’ / LJ

\ 4/

<0Z ON®
<Z200
<Z200
< ZIO0
&

=

5

kY

Class Activation Mapping

Class
Activation
Map

(Australian terrier)

— + Wn*

linear combination
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Grad-CAM

Guided Backpropagation

Rectified Conv FC Layer
Feature Maps Activations

Guided Grad-CAM

C | Tiger Cat

Grad-CAM
y
global average pooling
rm——
1 oy
c __ - c _ c Ak
Y%= 7 § :E : Ak LGrag.cam = ReLU E oA
i g i k
N~ ~ ~
gradients via backprop linear combination

Language Technologies Institute




Visualizing the Last CNN Layer: t-sne

Alex Net

Embed high dimensional data

points (i.e. feature codes) so . pin
that pairwise distances are 4‘%?,.?
conserved in local )
neighborhoods.

Language Technologies Institute



Training tricks
= Data augmentation (Create more data)
= |mage scaling
= Shifting
= Rotation
= Mirroring
= Optimization
= Dropout
= Regularization
= Many more tricks/tips that we will discuss in Week 8
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Fine tuning for specific tasks

= Often start with an existing architecture and an
already trained network (for example AlexNet or
VGGNet for object recognition)

= Discard the final layer score function and
replace with your own (FC7)

= Perform gradient decent on it

= Nice thing about neural networks is that we can
continue training them with new data
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Other popular architectures

= LeNet — an early 5 layer architecture for
nandwritten digit recognition

» DeepFace — Facebook’s face recognition CNN
= AlexNet — Object Recognition

= Already trained models for object recognition
can be found online
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Residual Networks

= Adding residual connections
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Googlenet

» Using residual blocks

= Loss function in different layers of the
network
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Densely Connected CNN
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