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Upcoming Schedule

= First project assignment:
= Proposal presentation (10/2 and 10/4)
= First project report (Sunday 10/7)

= Second project assignment
= Midterm presentations (11/6 and 11/8)
= Midterm report (Sunday 11/11)

= Final project assignment

* Final presentation (12/4 & 12/6)
* Final report (Sunday 12/9)
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Proposal Presentation (10/2 and 10/4)

5 minutes (about 5-10 slides)
= All team members should be involved in the presentation

Wil receive feedback from instructors and other students

= 1-2 minutes between presentations reserved for written
feedback

= Main presentation points
= (General research problem and motivation
= Dataset and input modalities
= Multimodal challenges and prior work

= You need to submit a copy of your slides (PDF or PPT)
= Deadline: Friday 10/5 (on Gradescope)
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Project Proposal Report

= Part 1 (updated version of your pre-proposal)

= Research problem:
= Describe and motivate the research problem
= Define in generic terms the main computational
challenges
= Dataset and Input Modalities:

= Describe the dataset(s) you are planning to use for this
project.

= Describe the input modalities and annotations available in
this dataset.
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Project Proposal Report

= Part 2

= Related Work:

* |nclude 12-15 paper citations which give an overview of
the prior work

= Present in more details the 3-4 research papers most
related to your work
= Research Challenges and Hypotheses:

= Describe your specific challenges and/or research
hypotheses

= Highlight the novel aspect of your proposed research
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Project Proposal Report

= Part 3

= Language Modality Exploration:
= Explore neural language models on your dataset (e.g., using Keras)

= Train at least two different language models (e.g., using SimpleRNN,
GRU or LSTM) on your dataset and compare their perplexity.

» |nclude qualitative examples of successes and failure cases.

= Visual Modality Exploration:

= Explore pre-trained Convolutional Neural Networks (CNNs) on your
dataset

= Load a pre-existing CNN model trained for object recognition (e.g.,
VGG-Net) and process your test images.

= Extract features at different network layers in the network and visualize
them (using t-sne visualization) with overlaid class labels with different
colors.
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Lecture Objectives

= \Word representations & distributional hypothesis
= Learning neural representations (e.g., Word2vec)

= Language models and sequence modeling tasks
= Recurrent neural networks
= Backpropagation through time

= Gated recurrent neural networks
= Long Short-Term Memory (LSTM) model
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Representing Words:
Distributed Semantics
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Possible ways of representing words

Given a text corpus containing 100,000 unigue words

‘ Classic binary word representation: [0; 0; 0; 0;....; 0; 0; 1; 0;...; 0; 0]

»
>

100,000d vector
m=) Only non-zero at the index of the word
‘ Classic word feature representation: [5; 1; 0; O;....; 0; 20; 1; 0;...; 3; 0]

300d vector ]
=) Manually define 300 “good” features (e.g., ends on —ing)

# Learned word representation: [0,1; 0,0003; 0;....; 0,02; 0.08; 0,05]

300d vector

mm) This 300-dimension vector should approximate the
“meaning” of the word
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The Distributional Hypothesis

= Distribution Hypothesis (DH) [Lenci 2008]

= At least certain aspects of the meaning of lexical expressions
depend on their distributional properties in the linguistic contexts

= The degree of semantic similarity between two linguistic
expressions a and B is a function of the similarity of the linguistic
contexts in which o and B can appear

= Weak and strong DH

= Weak view as a quantitative method for semantic analysis and
lexical resource induction

= Strong view as a cognitive hypothesis about the form and origin of
semantic representations; assuming that word distributions in
context play a specific causal role in forming meaning
representations.
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What is the meaning of “bardiwac”?

= He handed her glass of bardiwac.
= Beef dishes are made to complement the bardiwacs.

= Nigel staggered to his feet, face flushed from too much
bardiwac.

= Malbec, one of the lesser-known bardiwac grapes, responds
well to Australia’s sunshine.

= | dined off bread and cheese and this excellent bardiwac.

= The drinks were delicious: blood-red bardiwac as well as light,
sweet Rhenish.

— bardiwac is a heavy red alcoholic beverage made from
grapes
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Geometric interpretation

" oW vector Xdog get | see | use | hear | eat | Kkill
describes usage of knife | 51 | 20 | 84 | 0 | 3 | 0
word dog in the cat [ 52 [ 58] 4 | 4 6|26
COrpus dog | 1151 83 | 10 | 42 | 33 | 17

boat | 59 | 39 | 23 4 0 0

= can be seen as cp| B[ 141 6] 2 [1]0
coordinates of point pig [ 12 ) 17] 5 ] 2 al
in n-dimensional banana | 11 | 2 2 0 181 0

Euclidean space R" :
co-occurrence matrix M
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Distance and similarity

Two dimensions of English V=0bj DSM

= jllustrated for two S -
dimensions: get and s |
USe: Xg4oq = (115, 10) knife
= similarity = spatial |
.. . 2 o
proximity (Euclidean 3 8 ~
distance) o |
= |ocation depends on oat
frequency of noun & 7 cate;&dag
(fdog ~ 2.7 1:cat) o | —2 | | |

0 20 40 60 80 100 120

get
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Angle and similarity

Two dimensions of English V=Obj DSM

120
|

= direction more
Important than
location

100
|

knife

= normalise “length”
|[Xg0g]| OF VeCtor

Luse

= Oruse angle a as

distance measure dog

>e

I I I
80 100 120

get
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Semantic maps

oo
- onion potato kﬂgﬂﬁ ® bird
& » groundanimal
< mushroom * fruitTree
o * = chicken cup ® green
» banana b "I.ui * tool
0 ™ H
N cat ettce . battle vehicle
a cherrys * . . .
Com
ig lion™9 * e pear pen
pig pineapple s
= i » B PO
b= ship baat Ca7 .
elephant &nail 9 &  telephoncs = hn_ilre
L penci
N Eﬂ-g'ech.lclh rm:;het .
= swar oW o* Motorcycle hamimer
1 . . pﬂﬂEDﬂh truck .
penguin .
; chisel
4;' = turtle * helicopter ® g screwdriver
]
SCISS0rs
| | | | | |
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Learning Neural
Word Representations
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How to learn neural word representations?

=) Distribution hypothesis: Approximate the
word meaning by its surrounding words

m) \Words used in a similar context will lie close together

AN ™

He was|walking [away because ...
He was|runninglaway because ...

— Instead of capturing co-occurrence counts directly,

predict surrounding words of every word

T
% > Y. logp(wyyluw)

t=1 —c<j<c,j#0
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How to learn neural word representations?

No activation function -> very fast

., He
z 8 Was
walking S S
3 Away
because
300d 300d
[0;0;0;0;....;0; 0; 1; 0;...; 0; 0] [0;1;0;0;....;0; 0; 0; 0;...; 0; O]

%\ [0; 0; 0; 1;....; 0; 0; 0; 0;...; 0; 0]
He was|walking faway because ... [0;0;0;0;...5 150, 0, 0;..5 0 O]

He was]|runninglaway because ... [0;0;0;0;....; 0, 0; 0; 0;...; 0; 1]
Word2vec algorithm: https://code.google.com/p/word2vec/
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How to use these word representations

If we would have a vocabulary of 100 000 words:

Classic NLP: ___ 100 000 dimensional vector 4
Walking: [0;0;0;0;....;0;0; 1; 0;...; 0; O]
Running: [0;0;0;0;....;0;0; 0; 0;...; 1; 0]

100 000d

mm) Similarity = 0.0

l Transform: xX’=x*W

Goal: 300 dimensional vector
) > 300d

Walking: [0,1; 0,0003; 0;....; 0,02; 0.08; 0,095]
Running: [0,1; 0,0004; 0;....; 0,01; 0.09; 0,05]

mm) Similarity = 0.9

&
<
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Vector space models of words

# While learning these word representations, we are
actually building a vector space in which all words
reside with certain relationships between them

# Encodes both syntactic and semantic relationships

‘ This vector space allows for algebraic operations:

Vec(king) — vec(man) + vec(woman) = vec(queen)

[ Why linear algebra is working? ]
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Vector space models of words: semantic relationships

2 T T - T T T
China«
*Beijing
15 Russiat 1
Japarx
1L Moscow |
Turkey Ankara  okyo
0.5 1
Poland:
0r Germxem]ﬁ -
France Warsaw
w —HBerlin
05 F |tal‘f‘< Paris .
#Athens
Greecet ®
-1+ Spairx Rome |
# Sadrid
-1.5 | Portugal sLisbon -
_2 1 1 1 1 1 1 |
-2 1.5 1 0.5 0 0.5 1 1.5 2

Trained on the Google news corpus with over 300 billion words
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Language Seguence
Modeling Tasks
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Seguence Modeling: Sequence Label Prediction

WWWWW Masterful!

By Antony Witheyman - January 12, 2006

Ideal for anyone with an interest in Prediction
disguises who likes to see the subject
tackled in a humourous manner.

Sentiment ?
(positive or negative)

0 of 4 people found this review helpful

Sentiment label?

A
4 A\

[ R N N D R

Ideal for anyone with an Interest in disguises
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Seqguence Modeling: Sequence Prediction

WWWWW Masterful!

By Antony Witheyman - January 12, 2006

Ideal for anyone with an interest in Prediction Part-of-speech ?
disguises who likes to see the subject '

) (noun, verb,...)
tackled in a humourous manner.

0 of 4 people found this review helpful

POS? POS? POS? POS? POS? POS? POS? POS?

[ R N N D R

Ideal for anyone with an Interest in disguises
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Seqguence Modeling: Sequence Representation

WWWWW Masterful!

By Antony Witheyman - January 12, 2006

Ideal for anyone with an interest in Learning i
disguises who likes to see the subject ﬁ Sequence representatlon

tackled in a humourous manner.

0 of 4 people found this review helpful

[0,1; 0,0004; 0;....; 0,01; 0.09; 0,05]

A
4 A\

[ R N N D R

Ideal for anyone with an Interest in disguises
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Sequence Modeling: Language Model

WWWWW Masterful!

By Antony Witheyman - January 12, 2006

Ideal for anyone with an interest in Prediction
disguises who likes to see the subject Language Model
tackled in a humourous manner.

0 of 4 people found this review helpful

Next word?

A
4 A

I

ldeal for anyone with
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Application: Speech Recognition

arg max P(wordsequence | acoustics) =

wordsequence
arg max P(acoustics | wordsequence) x P(wordsequence)
wordsequence P (aCOUSti CS)

arg max P(acoustics | wordsequence) x P(wordsequence)

wordsequence

Language model
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Application: Language Generation

Embedding
[0,1;
0,0004, .
_ Generation Ideal for anyone with an interest in
T disguises who likes to see the subject
0.09; tackled in a humourous manner.
0,05]

Example: Image captioning

[0,1;

0’0004’ ﬁ The man at bat readies to swing at the
ceeny pitch while the umpire looks on.
0.09;

0,05]
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N-Gram Language Model Formulations

= Word sequences
W, =W,..W_
= Chain rule of probabillity n
P(W) = P(W,) P(W, | W) P(w, | Wy)...P(w, [wy™) =] [ P(w, [w™)
= Bigram approximation -
Pw) =] [ P(w, |w, )
= N-gram apprkc:)lximation
() = ] PO 1w
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Evaluating Language Model: Perplexity

The best language model is one that best predicts an unseen test set
* Gives the highest P(sentence)

Perplexity is the inverse probability of %
the test set, normalized by the number PP(W) = P(wyw,..wy)
of words:

o —
Pwyw,...wy)
Chain rule: .

PP(W) = V¥ :
P P(wilwy...wi—1)

For bigrams:
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Challenges in Sequence Modeling

=  Part-of-speech ?
T Yr  Masterfull (noun,ve}?b,...)

By Antony Witheyman - January 12, 2006

Ideal for anyone with an interest in . Sentlment ? _
disguises who likes to see the subject (positive or negative)
tackled in a humourous manner.

0 of 4 people found this review helpful " Language MOdeI

= Sequence representation

Main Challenges:

= Sequences of variable lengths (e.g., sentences)
= Keep the number of parameters at a minimum

= Take advantage of possible redundancy
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Time-Delay Neural Network

i 1D Convolution l—V
o I I

ldeal for anyone with an Interest in disguises

Main Challenges:

= Keep the number of parameters at a minimum

= Take advantage of possible redundancy
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Neural-based Unigram Language Model (LM)

P("dog on the beach”)
=P(dog|START)P(on|dog)P(the|on)P(beach|the)
P(bla): not from count, but the NN that can predict the next word.

P(next word is P(next word is P(next word is P(next word is
“dog”) “on”) “the”) “beach”)
Neural Neural Neural Neural
Network Network Network Network

t t t t

1-of-N encoding 1-of-N encoding  1-of-N encoding 1-of-N encoding
of “START” of “dog” of “on” of “the”



Neural-based Unigram Language Model (LM)

P("dog on the beach”)
=P(dog|START)P(on|dog)P(the|on)P(beach|the)
P(bla): not from count, but the NN that can predict the next word.

P(next word is P(next word is P(next word is P(next word is
“dog”) “On”) “the”) “beach”)
A_A A A AA AA A A A4

Neu It does not model sequential
Netw  information between predictions.
t I Recurrent Neural Networks!

1-of-N encoding 1-of-N encoding  1-of-N encoding 1-of-N encoding
of “START” of “dog” of “on” of “the”




Recurrent Neural
Networks
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Sequence I:)redlc’[lc?orr] Unigram Language Model)

Input data: x* x? x3 ... (x' are vectors)
Output data: y! y2 y3 ... (y' are vectors)

I How can we include temporal dynamics? I



Elman Network for Sequence Prediction

(or.Unigram.Language.Madel)

Input data: x* x? x3 ... (x' are vectors)
Output data: y! y2 y3 ... (y' are vectors)

The same model parameters are used again and again.

Can be trained using backpropagation



Recurrent Neural Network

Feedforward Neural Network

@ L® = —logP(Y = y]z(D)
@ @ z(®) = matmult(h®, V)

a @ h® = tanh(Ux®)
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Recurrent Neural Networks
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Recurrent Neural Networks - Unrolling

L = EL(t)
t

@ L® = —logP(Y = y]z(D)

3
@ @ z(®) = matmult(h®, V) 25 703

a h ;h(Z)\ »[h(3)

h® = tanh(Ux™ + Wh=1

@ @ @

Same model parameters are used for all time parts.

41
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RNN-based Language Model

P(nextwordis P(nextwordis  P(nextwordis  P(nextword is
“dog”) “On”) “the”) beaCh

1-of-N encoding 1-of-N encoding 1-of-N encoding 1-of-N encoding
of “START” of “dog” of “on” of “nice”

?
Q\:#

» Models long-term information



RNN-based Sentence Generation (Decoder)

P(nextwordis P(nextwordis  P(nextwordis  P(nextword is
“dog”) “On”) “the”) beaCh

1-of-N encoding 1-of-N encoding 1-of-N encoding 1-of-N encoding
of “START” of “dog” of “on” of “the”

Context

» Models long-term information



Seqguence Modeling: Sequence Prediction

WWWWW Masterful!

By Antony Witheyman - January 12, 2006

Ideal for anyone with an interest in Prediction
disguises who likes to see the subject
tackled in a humourous manner.

Sentiment ?
(positive or negative)

0 of 4 people found this review helpful

Sentiment label?

A
4 A\

[ R N N D R

Ideal for anyone with an Interest in disguises
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RNN for Sequence Prediction

P(word is P(word is P(word is
positive) positive) positive)

Ideal for anyone

1 1
L= NZ L = NZ —logP(Y = y®|z®)

SR

P(word is
positive)

disguises



RNN for Sequence Prediction

P(sequence is
positive)

b gl e

ey |

?
=_>

Ideal for anyone disguises

L=LMN =—logP(Y = y™|z(M)



Seqguence Modeling: Sequence Representation

WWWWW Masterful!

By Antony Witheyman - January 12, 2006

Ideal for anyone with an interest in Learning i
disguises who likes to see the subject ﬁ Sequence representatlon

tackled in a humourous manner.

0 of 4 people found this review helpful

[0,1; 0,0004; 0;....; 0,01; 0.09; 0,05]

A
4 A\

[ R N N D R

Ideal for anyone with an Interest in disguises
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RNN for Sequence Representation

P(nextwordis P(nextwordis  P(nextwordis  P(nextword is
“dog”) “On”) “the”) beaCh

1-of-N encoding 1-of-N encoding 1-of-N encoding 1-of-N encoding
of “START” of “dog” of “on” of “nice”

?
w\zw




RNN for Sequence Representation (Encoder)

Sequence
Representation

E@E&i} — 3

1-of-N encoding 1-of-N encoding 1-of-N encoding 1-of-N encoding
of “START” of “dog” of “on” of “nice”




RNN-based for Machine Translation

Le chien sur la plage =) The dog on the beach

ZMEQ -\-NII — 3

1-of-N encoding 1-of-N encoding 1-of-N encoding  1-of-N encoding 1-of-N encoding
of “le” of “chien” of “sur” of “la” of “plage”




Encoder-Decoder Architecture

Context

1-0f-N encoding 1-0f-N encoding 1-0f-N encoding

What is the loss function?




Related Topics

= Character-level “language models”

= Xiang Zhang, Junbo Zhao and Yann LeCun, Character-level
Convolutional Networks for Text Classification, NIPS 2015

http://arxiv.org/pdf/1509.01626v2.pdf

= Skip-though: embedding at the sentence level

= Ryan Kiros, Yukun Zhu, Ruslan Salakhutdinov, Richard S.
Zemel, Antonio Torralba, Raquel Urtasun, Sanja Fidler. Skip-
Thought Vectors, NIPS 2015

http://arxiv.org/pdf/1506.06726v1.pdf
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Backpropagation
Through Time

Language Technologies



Optimization: Gradient Computation

Vector representation:

dy 0y 0y
= = h
X axl’axz'axJ y)y=fh)
Gradient
T
\\ dh h) h=g)
V,y = 5}; Vi v <;
\
/ “backprop” Gradient

“local” Jacobian @

(matrix of size |h| X |x| computed
using partial derivatives)
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Backpropagation Algorithm

Forward pass —logP(Y = y|z)

. (cross-entropy)
= Following the graph topology,
compute value of each unit matmult(h,, W)
2, ¥V 3
Backpropagation pass
= |nitialize output gradient = 1 @ hy, = f(hy W)

= Compute “local” Jacobian matrix
using values from forward pass

= Use the chain rule:

Gradient = “local” Jacobian X
“backprop” gradient
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Recurrent Neural Networks

L = EL(t)
t

@ L® = —logP(Y = y]z(D)

@ @ z(®) = matmult(h®, V)

a h ;h(Z)\

h® = tanh(Ux® + WhE-1)

© ©

Z @
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Backpropagation Through Time

t t
Gradient ="backprop” gradient @
@ @ 3.0 X “local” Jacobian
oL 9L oL® @
@or@ (Vz(t)L) Py (t) LD 5, (t) = SlngLd(Zt) -1,,0 @
KVAQ)

@ Viol =V ol—=—= PTG =V oLV @
ao(t) ah(t+1)
Vol = Vol ape T Vel s @
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Backpropagation Through Time

L= 2 L® = _Z logP(Y = y®|z®)
t t

Gradient ="backprop” gradient
X “local” Jacobian

Gz(t)
® wt=Ywan
t
oh®
@ Vwl = Z(Vth)

dh®
©) 7y = Z(Vh(t)l‘)

Language Technologies Institute



Gated Recurrent
Neural Networks
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RNN for Sequence Prediction

P(word is P(word is P(word is
positive) positive) positive)
|deal for

anyone

L = z L = Z —logP(Y = y®|z®)
t t

SR

P(word is
positive)

disguises



RNN for Sequence Prediction

P(sequence is
positive)

b gl e

ey |

?
=_>

Ideal for anyone disguises

L=LMN =—logP(Y = y™|z(M)



Recurrent Neural Networks

L = EL(t)
t

@ L® = —logP(Y = y]z(D)

@ @ z(®) = matmult(h®, V)

a h ;h(Z)\

h® = tanh(Ux® + WhE-1)

© ©

Z @
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Long-term Dependencies

Vanishing gradient problem for RNNSs:

h® ~tanh(Wh-D)
Qutputs
Hidden
Layer
|nputs
Time 1 2 3 4 5 6 7

» The influence of a given input on the hidden layer, and therefore on
the network output, either decays or blows up exponentially as it
cycles around the network's recurrent connections.
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Recurrent Neural Networks
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LSTM ideas: (1) “Memory” Cell and Self Loop
[Hochreiter and Schmidhuber, 1997]

Long Short-Term Memory (LSTM)

I// n
SNa/+1
oA c® L p(t+1)
o C > h
x(@®

( ) Self-
loop
[]
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LSTM Ideas: (2) Input and Output Gates
[Hochreiter and Schmidhuber, 1997]

sigmoid

N €
S x® 0_/Output gate
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LSTM ldeas:

(3) Forget Gate [Gers et al., 2000]

g tanh
i\ _[sigm h®
f] | sigm ( x@®
o sigm

)

C(t) — f@c(t_l) + i@g
h® = o®tanh(c®)

sigmoid
h(t)\ ) f
x(® 0_/Forget gate

sigmoid

(0

\\\ h( t )\ .+/1-
x(t) 0

Output gate
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Recurrent Neural Network using LSTM Units

SENG

| %4

2P C©
} a

4

z(é

LSTM® o LSTM® o LSTM® fersersessens — LSTM®

¥y 6 6 o

Gradient can still be computer using backpropagation!

68
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Bi-directional LSTM Network

T Ty T
\ A} a

| %4

LSTMY fs

el

LSTM(S) «

of

LSTM(ll)

[]

3
LSTM(Z)

o LSTM®

[}

o LSTM®

A

LSTM(ZT)

[/

(7)
LSTM 1

TE 6 & &
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Deep LSTM Network

A} y

z(é

vV
LSTMY o LSTM®) | LSTMQ) frrsssssssees — LSTMY)
LSTM® o LSTM® o LSTME) forssssssses —{ LSTMO
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