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Objectives of today’s class

= Unsupervised representation learning
= Restricted Boltzmann Machines
= Autoencoders
= Deep Belief Nets, Stacked autoencoders

= Multi-modal representations
= Coordinated vs. joint representations
= Multimodal Deep Boltzmann Machines
= Deep Multimodal autoencoders
= Tensor Fusion representation
= Low-rank fusion representations
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Presentations — Tuesday October 2"

» Visual Dialog: Vincent Kang, Serena Wang, David Zeng

» |mage generation conditioned on textual summary and emotion tag: Arnav Kumar,
Samuel Maskell, Akshay Srivatsan, Nikolai Vogler

= Multimodal Sentiment/Emotion: Irene Li, Holmes Wu, Liangke Gui, Sai Nihar
Tadichetty

= Movie Description: Rudy Chin, Vigneshram Krishnamoorthy, Sreyashi Nag, Raphael
Olivier Olivier

» Embodied QA: Sai Bhaskar, Satyen Rajpal, Himanshi Yadav, Hafeezul Rahman
Mohammad

» Multitasking learning for multimodal data: Aditi Chaudhary, Nitish Kumar Kulkarni,
Bhargavi Paranjape, Zarana Parekh

» Visual Relationship: Jiahong Ouyang, Liz Yang, Yu Chi Wang, Haoliang Jiang

= Room-2-Room Navigation: Jonathan Francis, Sanket Vaibhav Mehta, Josh Bennett,
Vivek Gopal Ramaswamy, Rahul Ramakrishnan

» Multimodal image-text task with auxiliary task: Vidhisha Balachandran, Daniel
Spokoyny, Dhruv Shah

= Improving Compositionality in Deep Module Networks for VQA: Nidhi Vyas, Lalitesh
Morishetti, Bhavya Karki, Sai Krishna Rallabandi
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Presentations — Thursday October 4th

» Self-Supervised Learning of Visual Representations using Multimodal
Documents: Akshita Mittel, Purna Sowmya Munukutla, Yash Patel

»  VQAWNisual Relations/Grounding free-form text in image: Vasu Sharma, Ankita
Kalra, Simral Chaudhary, Vaibhav

» Transforming images with text captions: Ben Newman, Ritwik Das, Pengsheng Guo,
Connie Fan

= Scene graph generation: Aviral Anshu, Sarthak Garg, Joel Moniz, Priyatham
Bollimpalli

» Graph driven VQA: Parvathy Geetha, Pravalika Avvaru, Ganesh Palanikumar
» Persuasive Opinion Multimedia: Anjalie Field, Craig Stewart, Yiheng Zhou

» Visually-grounded Natural Language Navigation: Radhika Parik, Wenchao Du,
Jagjeet Singh, Balaram Buddharaju, Karthik Paga

» Multimodal Sentiment/Emotion: Shaojie Bai, Andrew Zhang, Edward Wang, Lam
Wing Chan

= Generating image from Scene-graph: Sushant Mehta, Gaurav Mittal, Anuva Agarwal,
Shubham Agrawal, Tanya Marwah

»  Embodied QA: Zachary Kaden, George Larionov, Jean-Baptiste Lamare
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Unsupervised
representation learning
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Unsupervised learning

= We have access to X = {x, x5, ..., X, } and not
Y ={y1,Y2) ) ¥n}
= Why would we want to tackle such a task
= 1. Extracting interesting information from data
= Clustering

= Discovering interesting trends
= Data compression

= 2. Learn better representations
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Unsupervised representation learning

= Force our representations to better model input
distribution
= Not just extracting features for classification

= Asking the model to be good at representing the data
and not overfitting to a particular task

= Potentially allowing for better generalizability
= Use for initialization of supervised task,

especially when we have a lot of unlabeled data
and much less labeled examples
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Restricted Boltzmann
Machines
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Restricted Boltzmann Machine (RBM)

= Undirected Graphical Model
= A generative rather than discriminative model
= Connections from every hidden unit to every visible one

= No connections across units (hence Restricted), makes it
easier to train and do inference on

@ @ P @ Hidden layer

<

@ @ © o o @ Visible layer
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Restricted Boltzmann Machine (RBM)

(x, h: 6) exp(—E(x, h; 6))
X, N, S rtition
P S 3 exp(—E(xX', I 0)) — pmetion 7

= Hidden and visible layers are binary (e.g. x = {0, ..., 1,0,1})

= Model parameters 8 = {W, b, a}
E=—-—xWh — bx —ah
E=—Zi2j xihj—Zibixi—‘Zjath" @ OOO Hidden

\ ' ) y ’ Y layer

Interaction Bias terms }‘ :

term @ @ Visible
e 00
layer
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Boltzmann Machine

exp(—E(x, h; 0))

> 2 exp(—E(x', h'; 0))
Hidden and visible layers are binary (e.g. x = {0, ..., 1,0,1})

p(x, h;0) =

11
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Statistical Mechanics: Boltzmann Distribution

[also called Gibbs measure]

exp(—E(h; 0)/kT)
2 exp(—E(R’; 0)/KT)

» probability distribution that gives the probability
that a system will be in a certain state h

p(h; 0) =

E(h; 0): Energy of state h
k: Boltzmann constant
T: Thermodynamic temperature
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RBM inference (have a trained 0)

Hidden layer a

= For inference
ONOREENC
n p(hj = 1|x; 9) = O-(Zixiwij + aj)’

. p(xl — 1|h, 6) — O'(Z] h]WU + bl) }4 - »- W
= derived from the joint probability
definition @ @ ¢ o0 @
= Conditional inference is easy and of Visible layer b

sigmoidal form

=  Given a trained model 8 and an observed
value x can easily infer h

=  Given a trained model 8 and an hidden
layer value h can easily infer x

= Need to sample as we get probabilities
rather than values
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RBM training (learning the 0)

Want to have a model that leads to good likelihood of training data
First express the data likelihood (through marginal probability):

2 —E(x,h;0) = _ :
= p(x;0) = hexp(z X ) Z zxzhexp( E(x, h; 9))

Want to optimize:
= argming [Zt —log (p(x(t); 9))] where t is a data sample
= sum across all samples

= minimizing negative log likelihood instead of maximizing the likelihood

To Approximate computation of model term using Contrastive
Divergence
= Based on Markov Chain Monte Carlo (Gibbs) sampling

[G. Hinton, Training Products of Experts by Minimizing Contrastive Divergence, 2002]

See http://www.iro.umontreal.ca/~lisa/twiki/bin/view.cqi/Public/DBNEquations for more details
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http://www.iro.umontreal.ca/~lisa/twiki/bin/view.cgi/Public/DBNEquations

RBM extensions

= So far have only modeled binary input and hidden states

= Gaussian-Bernoulli RBM allows for real value modeling
= Changes the inference and training only very slightly

= Visible units are modeled as real values (under a Gaussian
distribution), but hidden units are still binary

= Only requires a small change in some of the equations

= Can also introduce sparsity in hidden layers (sometimes
helps)
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Examples of what the model learns
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MNIST data Learned W terms for each hidden unit
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Deep Restricted Boltzmann Machines (DBMs)

= Can stack RBMs together to lead do
deep versions of them

= The visible layer can be binary, Gaussian
or Bernoulli

= Training fully end to end is very difficult
= Greedy layer-wise training O O O cer

O
= Combine the RBMs layer by layer
O O O L O 2nd Hidden layer
O
O

34 Hidden layer

1st Hidden layer

OOO X
OOOO T

Visible layer
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Deep Belief Networks (DBN)

= To make it easier used Deep Belief
Networks
=  Actually came before Deep RBMs
=  Simplifies model training
= Turn the undirected model to

directed one, making the interaction
simpler

For more detalils see

Language Technologies Institute

RBM=-

RBMN™

1

\

3'd Hidden layer

2"d Hidden layer

1st Hidden layer

Visible layer




What can you do with them

= On their own RBMs are very interesting but not
necessarily useful

= Stacking them can lead to more interesting models
= Can use the representation directly for some task

= Use them to pre-train or initialize discriminative models
= |nitialize Deep Neural Networks from them
= \We can convert the DBN welghts to those of DNN

= Major early success of deep learning for Automatic
Speech Recognition
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Audio representation for speech recognition

DBN-DNN
softmax
RBM DBN qu:o
RBM i & 1 & TW3T
copy
GRBM ! w, L T,
copy

[ iz L

[Hinton et al., Deep Neural Networks for Acoustic Modeling in Speech Recognition:
The Shared Views of Four Research Groups, 2012]
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Autoencoders
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Autoencoders — an alternative to RBM

= What does auto mean?
= Greek for self — self encoding _

» Feed forward network @@ ° e °@

iIntended to reproduce the Decoder— I
iInput

g
= Two parts encoder/decoder @@° ’ °@

* x' = f(g(x))—scorefunction . f 1

. 7 decoder CICERC

W
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Autoencoders

Mostly follows Neural Network structure
= Typically a matrix multiplication followed

by a nonlinearity (e.g sigmoid) @ @ ® o o @

= Activation will depend on type of x

= Sigmoid for binary g=o0W"h) g I
» Linear for real valued f
= Often we use tied weights to force the @ @° ° e @
sharing of weights in encoder/decoder feowx) f 1
= wr=w" f
= word2vec is actually a bit similar to an @ @ ® o °@

autoencoder (except for the auto part)
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Loss function

= Any differentiable similarity function
= Cross-entropy for binary x

= L ==Yl log(xs) + (1 —x;) log(1 — x'i))

= Euclidean for real valued x
= L= %Zk(xk — x')?
= Cosine similarity etc.
= Depends on the data being modeled

@)@ « -+ @)

\
\
\
\
\

9
@@o ® 0@ :) Loss

|

O® - GF
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Learning

= To learn the model parameters (W*, W), we

use back-propagation Error
* |n case of Euclidean (with linear act) and ]
Cross-entropy (with sigmoid act), we just @ @ e °@
have (x' — x) error to propagate I
= |f we're using tied weights, gradients need J 7
to be summed (like back propagation o o o
through time in RNN) @ @ @
= (Can use batch/stochastic gradient descent f 1

as before @@ . O@
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Hidden layer dimensionality

= Smaller that input - Undercomplete

=  Will compress the data, reconstruction of data far from
training distribution will be difficult

= Linear-linear encoder-decoder with Euclidean loss is
actually equivalent to PCA (under certain data
normalization)

= Larger than input - Overcomplete
= No compression needed

= Can trivially learn to just copy, so no structure is
extracted

= Does not encourage to lean meaningful features, a
problem
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Denoising autoencoder

= Simple idea
= Add noise to input x but
learn to reconstruct original

= | eads to a more robust
representation and prevents

copying
= Learns what the relationship
IS to represent a certain x

» Different noise added during
each epoch
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Autoencoder vs denoising autoencoder

= MNIST data (as before)

v
— {
[ 19

bt é& Neuron A (0%, 10%, 20%, 50% corruption IIIII
ll-- R DEENEREZEENE ZDEESarsllRErEE

Autoencoder Denoising autoencoder (25% noise) Denoising autoencoder (50% noise)

Qualitatively denoising autoencoder leads to more meaningful features




Stacked autoencoders

= (Can stack autoencoders as
well

= Each encoding unit has a
corresponding decoder

= As before, inference is
feedforward, but now with
more hidden layers

Decoder ™

Encoder ==
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Stacked autoencoders

= Greedy layer-wise training
= Start with training first layer

= Learnto encode xto h; and to
decode x from h4

= Use backpropagation

Dec

Enc
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Stacked autoencoders

= Greedy layer-wise training
= Start with training first layer

= Learnto encode xto h; and to
decode x from h4

= Use backpropagation
= Map from all x’s to hy's

= Discard decoder for now
= Train the second layer

= Learnto encode h to h, and to
decode h, from h4 Enc

= Repeat for as many layers

Dec
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Stacked autoencoders

= Greedy layer-wise training
= Start with training first layer —

= Learnto encode xto h; and to
decode x from h4

= Use backpropagation Decoder
= Map from all x’s to hy's

= Discard decoder for now
= Train the second layer —

= Learnto encode h to h, and to
decode h, from h4

= Repeat for as many layers

» Reconstruct using previously learned
decoders mappings

=  Fine-tune the full network end-to-end

Encodern

X
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Stacked denoising autoencoders

= Can extend thisto a
denoising model -

= Add noise when training
each of the layers Decoder

= Often with increasing
amount of noise per layer

= (0.1 for first, 0.2 for second,
0.3 for third

Encodern
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Deep representations

e . Decoder

= \What can we do with them?

= Compression
= Can work better than PCA

2000

i

.....................................

I

Pretraining Unrolling Fine-tuning
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Deep representations

What can we do with them?

= Compression
= Can work better than PCA

» Discarding the decoder and using the ~Classifier y

middle layer as a representation

* Finetuning the autoencoder for a task - [ eos jhz
Encoder — [ *e ] hy
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Multimodal
representations
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Multimodal representations

= \What do we want from multi-modal
representation Prediction

= Similarity in that space implies
similarity in corresponding concepts

= Useful for various discriminative Fancy

representation

tasks — retrieval, mapping, fusion
etc.

= Possible to obtain in absence of one
or more modalities

= Fill in missing modalities given
others (map between modalities)

Fancy

Modality 1 representation

Modality 2
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Core Challenge: Multimodal Representation

Definition: Learning how to represent and summarize multimodal data in away
that exploits the complementarity and redundancy.

@ Joint representations:

Representation

Modality 1 Modality 2
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Joint Multimodal Representation

_ _ Tensed voice
Joint Representation

(Multimodal Space)
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Core Challenge 1: Representation

Definition: Learning how to represent and summarize multimodal data in away
that exploits the complementarity and redundancy.

@ Joint representations: Coordinated representations:
Representation Repres. 1 <P Repres 2
Modality 1 Modality 2 Modality 1 Modality 2
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Joint
representations
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Shallow multimodal representations

= \Want deep multimodal representations
= Shallow representations do not capture complex relationships
= Often shared layer only maps to the shared section directly

Shared Representation Shared Representation

(0000 ¢+0000 0000]| [OOO0 244000 0000

! |
(00 000 00:00 +2+ 00| [00 060 0000 ¢0+ OO

Audio Input Video Input Audio Input Video Input

Shallow RBM Shallow Autoencoder
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Deep Multimodal autoencoders

= A deep representation
learning approach
= A bimodal auto-encoder

= Used for Audio-visual speech
recognition

Audio Reconstruction

Video Reconstruction

00 sss OO0

00 «es OO

T

T

00+ 00|

.
J

00+ 00

\/Shared

[O O e OO ] Representation

00 +++ 00

00+ 00

T

T

00 sss OO0

00 +++ 00 |

Audio Input

Video Input
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Deep Multimodal autoencoders - training

= |ndividual modalities can be
pre-trained

= Denoising Autoencoders

= To train the model to
reconstruct the other modality
= Use both
= Remove audio

Audio Reconstruction

Video Reconstruction

00+« 00 (00 +++ 00|
oy
00:- 00| (00--:00

\/Shared

[O O e OO ] Representation

@ e 0] (0000
f
WO | (004 00
Audio Input Video Input
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Deep Multimodal autoencoders - training

| I N d |V| d u al Mo d al |t| es can b - Audio Reconstruction  Video Reconstruction

pretrained 00 T 00) ©© T 20
= RBMs 00:-00] (00--:00

= Denoising Autoencoders \/g'h d
are

[O O e OO ] Representation

= To train the model to

. (00 00] @y )0
reconstruct the other modality — 5
= Use both 00+« 00| (OW O
Audio Input Video Input

= Remove audio
= Remove video
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Deep Multimodal autoencoders

N Shared

= Can now discard the decoder and 00 +++ 00 Jrepresenston
use it for the AVSR task /\

. . 00+ 00| (00:.+00]
= |nteresting experiment ¥ f
= “Hearing to see” (00 +e¢ 00 | [OO---OO]
Audio Input Video Input
Linear Classifier > Superyised
E Testing
Shared Shared
Representation ' ' Representation
joosens ’ —
Audio Video
Training Testing
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Deep Multimodal Boltzmann machines

=  Generative model

= |ndividual modalities trained like a
DBN

= Multimodal representation trained Joint Representation
using Variational approaches

= Used for image tagging and cross-
media retrieval h @
m

= Reconstruction of one modality from
another is a bit more “natural” than in
autoencoder representation hn

= Can actually sample text and images

WO w.(D

t
B (OO0
v A
m A A A A A
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Deep Multimodal Boltzmann machines

= Pre-training on unlabeled g G Grmesgs MR 2t oowen
data helps 8

pentax, k10d, beach, sea,
kangarooisland, ~ surf, strand,

southaustralia, ~ shore, wave, :ca et}lr:r;,yhiglllreen
sa, australia, seascape, Cieide '
. australiansealion, sand, ocean,
3001
= Can use generative models moe
night, lights,
christmas, flower, nature,
<no text> nightshot, green, flowers,
Inacht, nuit,notte, petal, petals, bud
longexposure,
Model MAP Prec@50 noche, noctuma
portrait, bw,
! blackandwhite,
Random 0.124 0.124 ::rearzén"?:f o blue, rid,art. ;
i g people, faces, artwork, painted,
SVM (Huiskes et al., 2010) 0.475 0.758 el e
LDA (Huiskes et al., 2010) 0.492 0.754 persan, man gl
DBM 0.526 £ 0.007  0.791 % 0.008 -

DBM (using unlabelled data) 0.585 + 0.004 0.836 £ 0.004

UM unseulpixel, trees, leaves, bw,blackandwhite,“
l  naturey crap foliage, forest, noiretblanc, S
woods, biancoenero
branches, blancoynegro ‘
path

= Code is available

http://www.cs.toronto.edu/~nitish/multimodal/
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http://www.cs.toronto.edu/~nitish/multimodal/

Deep Multimodal Boltzmann Machines

= Text information can help visual predictions!
= |Image retrieval task on MIR Flickr dataset

Model MAP Prec@50

Image LDA (Huiskes et al., 2010)  0.315 -

Image SVM (Huiskes et al.. 2010)  0.375 -

Image DBN 0.463 £ 0.004 0.801 £ 0.005
Image DBM 0.469 £ 0.005 0.803 £ 0.005
Multimodal DBM (generated text) 0.531 + 0.005 0.832 + 0.004
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Analyzing Intermediate Representations

+—4¢ Multimodal Deep Boltzmann Machine
1 Multimodal Deep Belief Net

0.60}

0.55f

Mean Average Precision

0.45r

0.40 : ' *
image input \nage mdd ge h\dde omt h\dd ext h\ddenztext nidden? ¢oxt input
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Comparing deep multimodal representations

= Difference between them and the RBMs and the
autoencoders

= Qverall very similar behavior

Model DBN DAE DBM

Logistic regression on joint
layer features

Sparsity + Logistic regression
on joint layer features
Sparsity + discriminative
fine-tuning

Sparsity + discriminative
fine-tuning + dropout

Language Technologies Institute

0.599 £+ 0.004 0.600 £ 0.004 0.609 £ 0.004

0.626 £+ 0.003 0.628 4+ 0.004 0.631 £ 0.004

0.630 £ 0.004 0.630 £ 0.003 0.634 £+ 0.004

0.638 £ 0.004 0.638 = 0.004 0.641 + 0.004




Multimodal Joint Representation

» For supervised learning tasks

= Joining the unimodal
representations:
= Simple concatenation
* Element-wise multiplication 900 -- 000 h,,
or summation /\
" Multilayer perceptron  p_(@@ 00 [@0. - 00,
= How to explicitly model
poth unimodal and
pimodal interactions?

e.g. Sentiment
@@ --- @ @) softmax

[QQ...QQ] [ ]

Text Image
X Y
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Multimodal Sentiment Analysis

MOSI dataset (Zadeh et al, 2016)
(& - ; Sentiment Intensity [-3,+3]
’, A e @@ ---@® @) softmax
« 2199 subjective video segments (000 ---000) h,

» Sentiment intensity annotations
* 3 modalities: text, video, audio

00 ---00), |

h,[c ACISELE

00 --00) | ] 00 ---00)

hy = f(W - [hy, hy, hy]) Text Image Audio
X Y Z

) @000

h,

Multimodal joint representation:
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Unimodal, Bimodal and Trimodal Interactions

Speaker’s behaviors

Sentiment Intensity

— “This MOVIE iS SICK” = == = mm o s o o o o s o o o o s o e s o o > ?

O

-8 “This MOVie is fair” = = = mm e o o o o o o o o o o o o o > +

E Unimodal
c SIMIl@ o= == o o o o o i s o o o e e e e >

-

LOUG VOICE [ == == o o o o i o s o i o o i o o o o o o > ?
= “This movie is sick” T | —— > + +
S bimodal
g “This movie is sick” FrOWN o= = o o o o o o o o o o o o s e > mmmm
sl re , s o
This movie is sick Loud Voice fmm==—=—————— > ?

©

e “This movie is sick” Smile Loud voice [= = === == > .
2 i trimodal
-IE “This movie is fair” Smile Loud voice [= = === == > +
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Bilinear Pooling

e.g. Sentiment
Models bimodal interactions: @0 ---®®) softmax
1

hm:hx®hy =hx®hy

» This week’s reading assignment proposes a X Y
lower dimension projection!
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Multimodal Tensor Fusion Network (TFN)

Models both unimodal and
bimodal interactions:

- ol -1 G

e.g. Sentiment

Bimodal e

@@ - @ @] softmax

h, @9 0@ | ),
90 ---00]) | ]
Text Image
X Y
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Multimodal Tensor Fusion Network (TFN)

hy ® h,

Can be extended to three modalities:

= @[] o]

Explicitly models / | \

bimodal and h[OO -‘-‘-OO]
interactions ! *

rraxrin | 00 - - 00)

Text Image Audio
X Y VA
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Experimental Results — MOSI Dataset

Multimodal Binary S-class  Regression Bl Binary 5-class  Regression
Baseline Acc(%) Fl  Acc(%) MAE  r Acc(%) Fl Acc(%) MAE  r
Random 502 487 239 188 - TFNlang'uage 74.8 75.6 38.5 0.99 0.61
SAL-CNN 73.0 - ; ] ] TFNucoustic  65.1 673 275 1.23 0.36
i‘F/M‘MD Z’l}-g 33? 2?-8 H? 22? TFNvimosa: 752 760 396 092  0.65
: : : TFNirimodat 745 750 389 093 0.65
TEN 771 719 420  0.87 0.70 TN, orrimodat  75.3 76.2 397 0.919 0.66
Human 85.7 875 539 071 082
— TEN 771 779 420 087 0.70
A 40 127 167 10237017 TFNariy 752 762 39.0 0.96 0.63
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From Tensor Representation to Low-rank Fusion

Low-rank Multimodal Fusion

Visual —

Language —_—

Visual —_—

—_— o Tensor Fusion Networks

Language
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(1) Decomposition of weight tensor W
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(2) Decomposition of Z
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(3) Rearranging computation
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Multimodal Encoder-Decoder

= Visual modality often
encoded using CNN

= Language modality will D)
be decoded using LSTM (:)
= A simple multilayer e
perceptron will be used / Q\
to translate from visual 00 00 | ]
(CNN) to language | |
(LSTM) @0 --00) L0 ---00]
Text Image

X Y
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