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Louis-Philippe Morency

Advanced
Multimodal Machine Learning

Lecture 5.1: Unsupervised 

learning and Multimodal 

representations

* Original version co-developed with Tadas Baltrusaitis



Objectives of today’s class

▪ Unsupervised representation learning

▪ Restricted Boltzmann Machines

▪ Autoencoders

▪ Deep Belief Nets, Stacked autoencoders

▪ Multi-modal representations

▪ Coordinated vs. joint representations

▪ Multimodal Deep Boltzmann Machines

▪ Deep Multimodal autoencoders

▪ Tensor Fusion representation

▪ Low-rank fusion representations



Presentations – Tuesday October 2nd

▪ Visual Dialog: Vincent Kang, Serena Wang, David Zeng

▪ Image generation conditioned on textual summary and emotion tag: Arnav Kumar, 

Samuel Maskell, Akshay Srivatsan, Nikolai Vogler

▪ Multimodal Sentiment/Emotion: Irene Li, Holmes Wu, Liangke Gui, Sai Nihar 

Tadichetty

▪ Movie Description: Rudy Chin, Vigneshram Krishnamoorthy, Sreyashi Nag, Raphael 

Olivier Olivier

▪ Embodied QA: Sai Bhaskar, Satyen Rajpal, Himanshi Yadav, Hafeezul Rahman 

Mohammad

▪ Multitasking learning for multimodal data: Aditi Chaudhary, Nitish Kumar Kulkarni, 

Bhargavi Paranjape, Zarana Parekh

▪ Visual Relationship: Jiahong Ouyang, Liz Yang, Yu Chi Wang, Haoliang Jiang

▪ Room-2-Room Navigation: Jonathan Francis, Sanket Vaibhav Mehta, Josh Bennett, 

Vivek Gopal Ramaswamy, Rahul Ramakrishnan

▪ Multimodal image-text task with auxiliary task: Vidhisha Balachandran, Daniel 

Spokoyny, Dhruv Shah

▪ Improving Compositionality in Deep Module Networks for VQA: Nidhi Vyas, Lalitesh

Morishetti, Bhavya Karki, Sai Krishna Rallabandi



Presentations – Thursday October 4th

▪ Self-Supervised Learning of Visual Representations using Multimodal 

Documents: Akshita Mittel, Purna Sowmya Munukutla, Yash Patel

▪ VQA/Visual Relations/Grounding free-form text in image: Vasu Sharma, Ankita 

Kalra, Simral Chaudhary, Vaibhav

▪ Transforming images with text captions: Ben Newman, Ritwik Das, Pengsheng Guo, 

Connie Fan

▪ Scene graph generation: Aviral Anshu, Sarthak Garg, Joel Moniz, Priyatham 

Bollimpalli

▪ Graph driven VQA: Parvathy Geetha, Pravalika Avvaru, Ganesh Palanikumar

▪ Persuasive Opinion Multimedia: Anjalie Field, Craig Stewart, Yiheng Zhou

▪ Visually-grounded Natural Language Navigation: Radhika Parik, Wenchao Du, 

Jagjeet Singh, Balaram Buddharaju, Karthik Paga

▪ Multimodal Sentiment/Emotion: Shaojie Bai, Andrew Zhang, Edward Wang, Lam 

Wing Chan

▪ Generating image from Scene-graph: Sushant Mehta, Gaurav Mittal, Anuva Agarwal, 

Shubham Agrawal, Tanya Marwah

▪ Embodied QA: Zachary Kaden, George Larionov, Jean-Baptiste Lamare
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Unsupervised 

representation learning



Unsupervised learning

▪ We have access to 𝑋 = {𝒙1, 𝒙2, … , 𝒙𝑛} and not 

𝑌 = {𝑦1, 𝑦2, … , 𝑦𝑛}

▪ Why would we want to tackle such a task

▪ 1. Extracting interesting information from data

▪ Clustering

▪ Discovering interesting trends

▪ Data compression

▪ 2. Learn better representations



Unsupervised representation learning

▪ Force our representations to better model input 

distribution

▪ Not just extracting features for classification

▪ Asking the model to be good at representing the data 

and not overfitting to a particular task

▪ Potentially allowing for better generalizability

▪ Use for initialization of supervised task, 

especially when we have a lot of unlabeled data 

and much less labeled examples
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Restricted Boltzmann 

Machines



Restricted Boltzmann Machine (RBM)

▪ Undirected Graphical Model

▪ A generative rather than discriminative model

▪ Connections from every hidden unit to every visible one

▪ No connections across units (hence Restricted), makes it 

easier to train and do inference on

𝑥2

ℎ2ℎ1

𝑥1

Hidden layer

Visible layer

ℎ𝑘

𝑥𝑛

[Smolensky, Information Processing in Dynamical Systems: Foundations of 

Harmony Theory, 1986]
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Restricted Boltzmann Machine (RBM)

𝑝 𝒙, 𝒉; 𝜃 =
exp(−E 𝒙, 𝒉; 𝜃 )

σ𝒙′σ𝒉′ exp(−E 𝒙′, 𝒉′; 𝜃 )
▪ Hidden and visible layers are binary (e.g. 𝒙 = {0,… , 1,0,1})

▪ Model parameters 𝜃 = 𝑊,𝒃, 𝒂

E = −𝒙𝑊𝒉 − 𝒃𝒙 − 𝒂𝒉
E = −σ𝑖σ𝑗𝑤𝑖,𝑗𝑥𝑖ℎ𝑗 − σ𝑖 𝑏𝑖𝑥𝑖 − σ𝑗 𝑎𝑗ℎ𝑗

Interaction 

term

Bias terms

𝑥2

ℎ2ℎ1

𝑥1

Hidden 

layer

Visible

layer

ℎ𝑘

𝑥𝑛

Partition 

function 𝒁
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Boltzmann Machine

𝑥2

ℎ2ℎ1

𝑥1

Hidden 

layer

Visible

layer

ℎ𝑘

𝑥𝑛𝑥2

ℎ2ℎ1

𝑥1
ℎ𝑘

𝑥𝑛

𝑝 𝒙, 𝒉; 𝜃 =
exp(−E 𝒙, 𝒉; 𝜃 )

σ𝒙′σ𝒉′ exp(−E 𝒙′, 𝒉′; 𝜃 )
▪ Hidden and visible layers are binary (e.g. 𝒙 = {0,… , 1,0,1})
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Statistical Mechanics: Boltzmann Distribution
[also called Gibbs measure]

ℎ2

ℎ5ℎ6

ℎ1
ℎ3

ℎ4

𝑝 𝒉; 𝜃 =
exp( Τ−E 𝒉; 𝜃 𝑘𝑇)

σ𝒉′ exp( Τ−E 𝒉′; 𝜃 𝑘𝑇)

➢ probability distribution that gives the probability 

that a system will be in a certain state 𝒉

E 𝒉; 𝜃 : Energy of state 𝒉

𝑘: Boltzmann constant

𝑇: Thermodynamic temperature



RBM inference (have a trained 𝜃)

▪ For inference

▪ 𝑝 ℎ𝑗 = 1 𝒙; 𝜃 = 𝜎 σ𝑖 𝑥𝑖𝑤𝑖𝑗 + 𝑎𝑗 ,

▪ 𝑝 𝑥𝑖 = 1 𝒉; 𝜃 = 𝜎 σ𝑗 ℎ𝑗𝑤𝑖𝑗 + 𝑏𝑖

▪ derived from the joint probability 

definition

▪ Conditional inference is easy and of 

sigmoidal form

▪ Given a trained model 𝜃 and an observed 

value 𝒙 can easily infer 𝒉

▪ Given a trained model 𝜃 and an hidden 

layer value 𝒉 can easily infer 𝒙

▪ Need to sample as we get probabilities 

rather than values

𝑥2

ℎ2ℎ1

𝑥1

Hidden layer

Visible layer

ℎ𝑘

𝑥𝑛

𝑊

𝒂

𝒃



RBM training (learning the 𝜃)

▪ Want to have a model that leads to good likelihood of training data

▪ First express the data likelihood (through marginal probability):

▪ 𝑝 𝒙; 𝜃 =
σ𝒉 exp(−𝐸 𝒙,𝒉;𝜃 )

𝑍

▪ Want to optimize:

▪ argmin𝜃 σ𝑡− log 𝑝 𝒙(𝑡); 𝜃 , where 𝑡 is a data sample

▪ sum across all samples

▪ minimizing negative log likelihood instead of maximizing the likelihood

▪ To Approximate computation of model term using Contrastive 

Divergence

▪ Based on Markov Chain Monte Carlo (Gibbs) sampling

See http://www.iro.umontreal.ca/~lisa/twiki/bin/view.cgi/Public/DBNEquations for more details

𝑍 =
𝒙


𝒉
exp(−E 𝒙, 𝒉; 𝜃 )

[G. Hinton, Training Products of Experts by Minimizing Contrastive Divergence, 2002]

http://www.iro.umontreal.ca/~lisa/twiki/bin/view.cgi/Public/DBNEquations


RBM extensions

▪ So far have only modeled binary input and hidden states

▪ Gaussian-Bernoulli RBM allows for real value modeling

▪ Changes the inference and training only very slightly

▪ Visible units are modeled as real values (under a Gaussian 

distribution), but hidden units are still binary

▪ [Hinton and Salakhutdinov, Reducing the Dimensionality of Data with 

Neural Networks, 2006]

▪ Only requires a small change in some of the equations

▪ Can also introduce sparsity in hidden layers (sometimes 

helps)
▪ [Lee et al., Sparse deep belief net model for visual area V2, 2007]



Examples of what the model learns

MNIST data Learned W terms for each hidden unit



Deep Restricted Boltzmann Machines (DBMs)

▪ Can stack RBMs together to lead do 

deep versions of them

▪ The visible layer can be binary, Gaussian 

or Bernoulli

▪ Training fully end to end is very difficult

▪ Greedy layer-wise training

▪ Combine the RBMs layer by layer

1st Hidden layer

Visible layer

2nd Hidden layer

3rd Hidden layer



Deep Belief Networks (DBN)

▪ To make it easier used Deep Belief 

Networks

▪ Actually came before Deep RBMs

▪ Simplifies model training

▪ Turn the undirected model to 

directed one, making the interaction 

simpler

1st Hidden layer

Visible layer

2nd Hidden layer

3rd Hidden layer

BN

BN

RBM

RBM

RBM

For more details see [Salakhutdinov and 

Hinton, Deep Boltzmann Machines, 2009]



What can you do with them

▪ On their own RBMs are very interesting but not 

necessarily useful

▪ Stacking them can lead to more interesting models
▪ Can use the representation directly for some task

▪ Use them to pre-train or initialize discriminative models

▪ Initialize Deep Neural Networks from them

▪ We can convert the DBN weights to those of DNN

▪ Major early success of deep learning for Automatic 

Speech Recognition



Audio representation for speech recognition

[Hinton et al., Deep Neural Networks for Acoustic Modeling in Speech Recognition: 

The Shared Views of Four Research Groups, 2012]
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Autoencoders



Autoencoders – an alternative to RBM

▪ What does auto mean?

▪ Greek for self – self encoding

▪ Feed forward network 

intended to reproduce the 

input

▪ Two parts encoder/decoder

▪ 𝑥′ = 𝑓(𝑔 𝑥 ) – score function

▪ 𝑔 - encoder

▪ 𝑓 - decoder
𝑥2𝑥1 𝑥𝑛

ℎ2ℎ1 ℎ𝑘

𝑥′2𝑥′1 𝑥′𝑛

𝑓

𝑔

Encoder

Decoder



Autoencoders

▪ Mostly follows Neural Network structure

▪ Typically a matrix multiplication followed 

by a nonlinearity (e.g sigmoid)

▪ Activation will depend on type of 𝒙

▪ Sigmoid for binary

▪ Linear for real valued

▪ Often we use tied weights to force the 

sharing of weights in encoder/decoder

▪ 𝑊∗ = 𝑊𝑇

▪ word2vec is actually a bit similar to an 

autoencoder (except for the auto part)

𝑓 = 𝜎(𝑊𝒙)

𝑔 = 𝜎(𝑊∗𝒉)

𝑥2𝑥1 𝑥𝑛

ℎ2ℎ1 ℎ𝑘

𝑥′2𝑥′1 𝑥′𝑛

𝑓

𝑔



Loss function

▪ Any differentiable similarity function

▪ Cross-entropy for binary 𝒙

▪ 𝐿 = −σ𝑘(𝑥𝑘 log 𝑥′𝑘 + (1 − 𝑥𝑘) log 1 − 𝑥′𝑘 )

▪ Euclidean for real valued 𝒙

▪ 𝐿 =
1

2
σ𝑘(𝑥𝑘 − 𝑥′𝑘)

2

▪ Cosine similarity etc.

▪ Depends on the data being modeled

𝑥2𝑥1 𝑥𝑛

ℎ2ℎ1 ℎ𝑘

𝑥′2𝑥′1 𝑥′𝑛

𝑓

𝑔

Loss



Learning

▪ To learn the model parameters (𝑊∗,𝑊), we 

use back-propagation

▪ In case of Euclidean (with linear act) and 

Cross-entropy (with sigmoid act), we just 

have (𝑥′ − 𝑥) error to propagate

▪ If we’re using tied weights, gradients need 

to be summed (like back propagation 

through time in RNN)

▪ Can use batch/stochastic gradient descent 

as before
𝑥2𝑥1 𝑥𝑛

ℎ2ℎ1 ℎ𝑘

𝑥′2𝑥′1 𝑥′𝑛

𝑓

𝑔

Error



Hidden layer dimensionality

▪ Smaller that input - Undercomplete
▪ Will compress the data, reconstruction of data far from 

training distribution will be difficult

▪ Linear-linear encoder-decoder with Euclidean loss is 
actually equivalent to PCA (under certain data 
normalization)

▪ Larger than input - Overcomplete
▪ No compression needed

▪ Can trivially learn to just copy, so no structure is 
extracted

▪ Does not encourage to lean meaningful features, a 
problem



Denoising autoencoder

▪ Simple idea

▪ Add noise to input 𝒙 but 

learn to reconstruct original

▪ Leads to a more robust 

representation and prevents 

copying

▪ Learns what the relationship 

is to represent a certain 𝒙

▪ Different noise added during 

each epoch

ො𝑥1

ℎ2ℎ1 ℎ𝑘

𝑥′2𝑥′1 𝑥′𝑛

𝑓

𝑔

Loss

𝑥2𝑥1 𝑥𝑛

Noise

ො𝑥2 ො𝑥𝑛𝑥2𝑥1 𝑥𝑛

ℎ2ℎ1 ℎ𝑘

𝑥′2𝑥′1 𝑥′𝑛

𝑓

𝑔

Loss



Autoencoder vs denoising autoencoder

▪ MNIST data (as before)

Qualitatively denoising autoencoder leads to more meaningful features

Autoencoder Denoising autoencoder (25% noise) Denoising autoencoder (50% noise)



Stacked autoencoders

▪ Can stack autoencoders as 

well

▪ Each encoding unit has a 

corresponding decoder

▪ As before, inference is 

feedforward, but now with 

more hidden layers

𝒙

𝒉𝟏

𝒙′

𝒉𝟐

𝒉′𝟏

Encoder

Decoder



Stacked autoencoders

▪ Greedy layer-wise training

▪ Start with training first layer

▪ Learn to encode 𝒙 to 𝒉𝟏 and to 

decode 𝒙 from 𝒉𝟏
▪ Use backpropagation

Dec

𝒙

𝒉𝟏

𝒙′

Enc



Stacked autoencoders

▪ Greedy layer-wise training

▪ Start with training first layer

▪ Learn to encode 𝒙 to 𝒉𝟏 and to 

decode 𝒙 from 𝒉𝟏
▪ Use backpropagation

▪ Map from all 𝒙’s to 𝒉𝟏’s 

▪ Discard decoder for now

▪ Train the second layer

▪ Learn to encode 𝒉𝟏to 𝒉𝟐 and to 

decode 𝒉𝟐 from 𝒉𝟏
▪ Repeat for as many layers 𝒉𝟏

Fixed

𝒙

𝒉𝟐
Enc

Dec

𝒉𝟏

𝒉′𝟏

Fixed



Stacked autoencoders

▪ Greedy layer-wise training

▪ Start with training first layer

▪ Learn to encode 𝒙 to 𝒉𝟏 and to 

decode 𝒙 from 𝒉𝟏
▪ Use backpropagation

▪ Map from all 𝒙’s to 𝒉𝟏’s 

▪ Discard decoder for now

▪ Train the second layer

▪ Learn to encode 𝒉𝟏to 𝒉𝟐 and to 

decode 𝒉𝟐 from 𝒉𝟏
▪ Repeat for as many layers

▪ Reconstruct using previously learned 

decoders mappings

▪ Fine-tune the full network end-to-end 𝒙

𝒉𝟏

𝒙′

𝒉𝟐

𝒉′𝟏

Encoder

Decoder



Stacked denoising autoencoders

▪ Can extend this to a 

denoising model

▪ Add noise when training 

each of the layers

▪ Often with increasing 

amount of noise per layer

▪ 0.1 for first, 0.2 for second, 

0.3 for third

𝒙

𝒉𝟏

𝒙′

𝒉𝟐

𝒉′𝟏

Encoder

Decoder



Deep representations

▪ What can we do with them?

▪ Compression

▪ Can work better than PCA

▪ [Hinton and Salatkhudinov, Reducing 

the dimensionality of data with neural 

networks, 2006]



Deep representations

▪ What can we do with them?

▪ Compression

▪ Can work better than PCA
▪ [Hinton and Salatkhudinov, Reducing the 

dimensionality of data with neural networks, 

2006]

▪ Discarding the decoder and using the 

middle layer as a representation

▪ Finetuning the autoencoder for a task

Classifier

𝒙

𝒉𝟏

𝒉𝟐

Encoder

𝒚
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Multimodal 

representations



Multimodal representations

▪ What do we want from multi-modal 

representation

▪ Similarity in that space implies 

similarity in corresponding concepts

▪ Useful for various discriminative 

tasks – retrieval, mapping, fusion 

etc.

▪ Possible to obtain in absence of one 

or more modalities

▪ Fill in missing modalities given 

others (map between modalities)

Modality 1 Modality 2 Modality 3

Fancy 
representation

Modality 1 Modality 2 Modality 3

Fancy 
representation

Prediction

Modality 1 Modality 2
Fancy 

representation
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Core Challenge: Multimodal Representation

Modality 1 Modality 2

Representation

Definition: Learning how to represent and summarize multimodal data in away 
that exploits the complementarity and redundancy.

Joint representations:A
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Joint Multimodal Representation

“I like it!” Joyful tone

Tensed voice

“Wow!”

Joint Representation
(Multimodal Space)
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Core Challenge 1: Representation

Definition: Learning how to represent and summarize multimodal data in away 
that exploits the complementarity and redundancy.

Modality 1 Modality 2

Representation

Modality 1 Modality 2

Repres 2Repres. 1

Joint representations:A Coordinated representations:B
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Joint 

representations



Shallow multimodal representations

▪ Want deep multimodal representations

▪ Shallow representations do not capture complex relationships

▪ Often shared layer only maps to the shared section directly

Shallow RBM Shallow Autoencoder



Deep Multimodal autoencoders

▪ A deep representation 

learning approach

▪ A bimodal auto-encoder

▪ Used for Audio-visual speech 

recognition

▪ [Ngiam et al., Multimodal Deep Learning, 2011]



Deep Multimodal autoencoders - training

▪ Individual modalities can be 

pre-trained

▪ Denoising Autoencoders

▪ To train the model to 

reconstruct the other modality

▪ Use both

▪ Remove audio



Deep Multimodal autoencoders - training

▪ Individual modalities can be 

pretrained

▪ RBMs

▪ Denoising Autoencoders

▪ To train the model to 

reconstruct the other modality

▪ Use both

▪ Remove audio

▪ Remove video



Deep Multimodal autoencoders

▪ Can now discard the decoder and 

use it for the AVSR task

▪ Interesting experiment

▪ “Hearing to see”



Deep Multimodal Boltzmann machines

▪ Generative model

▪ Individual modalities trained like a 

DBN

▪ Multimodal representation trained 

using Variational approaches

▪ Used for image tagging and cross-

media retrieval

▪ Reconstruction of one modality from 

another is a bit more “natural” than in 

autoencoder representation

▪ Can actually sample text and images

▪ [Srivastava and  Salakhutdinov,  Multimodal Learning with 

Deep Boltzmann Machines, 2012, 2014]



Deep Multimodal Boltzmann machines

▪ Pre-training on unlabeled 

data helps

▪ Can use generative models

▪ Code is available
▪ http://www.cs.toronto.edu/~nitish/multimodal/

http://www.cs.toronto.edu/~nitish/multimodal/


Deep Multimodal Boltzmann Machines

▪ Text information can help visual predictions!

▪ Image retrieval task on MIR Flickr dataset
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Analyzing Intermediate Representations



Comparing deep multimodal representations

▪ Difference between them and the RBMs and the 

autoencoders

▪ Overall very similar behavior



Multimodal Joint Representation

▪ For supervised learning tasks

▪ Joining the unimodal 

representations:

▪ Simple concatenation

▪ Element-wise multiplication  

or summation

▪ Multilayer perceptron

▪ How to explicitly model    

both unimodal and      

bimodal interactions?

· · ·

· · ·

· · ·

· · ·

· · ·

Text Image

· · · softmax

𝒀𝑿

e.g. Sentiment

𝒉𝒙 𝒉𝒚

𝒉𝒎
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Multimodal Sentiment Analysis

· · ·

· · ·

Text
𝑿

𝒉𝒙

softmax· · ·

Sentiment Intensity [-3,+3]

· · · 𝒉𝒎

Audio
𝒁

𝒉𝒛

· · ·

· · ·

· · ·

· · ·

Image
𝒀

𝒉𝒚

𝒉𝒎 = 𝒇 𝑾 ∙ 𝒉𝒙, 𝒉𝒚, 𝒉𝒛
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Unimodal, Bimodal and Trimodal Interactions

“This movie is fair”

Smile

Loud voice

Speaker’s behaviors Sentiment Intensity

U
n

im
o

d
al

?

“This movie is sick” Smile

“This movie is sick” Frown

“This movie is sick” Loud voice ?

B
im

o
d

al

“This movie is sick” Smile Loud voice

Tr
im

o
d

al

“This movie is fair” Smile Loud voice

“This movie is sick” ?

Resolves ambiguity

(bimodal interaction)

Still Ambiguous !

Different trimodal

interactions !

Ambiguous !

Unimodal cues

Ambiguous !
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= 𝒉𝒙 ⊗𝒉𝒚

Bilinear Pooling

· · ·

· · ·

· · ·

· · ·

Text Image

· · · softmax

𝒀𝑿

e.g. Sentiment

𝒉𝒙 𝒉𝒚

Models bimodal interactions:

𝒉𝒎 = 𝒉𝒙⊗𝒉𝒚

[Tenenbaum and Freeman, 2000]

𝒉𝒎

➢ This week’s reading assignment proposes a 

lower dimension projection!
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=
𝒉𝒙 𝒉𝒙⊗𝒉𝒚
1 𝒉𝒚

Multimodal Tensor Fusion Network (TFN)

· · ·

· · ·

· · ·

· · ·

Text Image

· · · softmax

𝒀𝑿

e.g. Sentiment

𝒉𝒙 𝒉𝒚

1

Models both unimodal and 

bimodal interactions:

𝒉𝒎 =
𝒉𝒙
1

⊗
𝒉𝒚
1

[Zadeh, Jones and Morency, EMNLP 2017]

𝒉𝒎
Unimodal

Bimodal

Important !
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Multimodal Tensor Fusion Network (TFN)

Can be extended to three modalities:

𝒉𝒎 =
𝒉𝒙
1

⊗
𝒉𝒚
1

⊗
𝒉𝒛
1

[Zadeh, Jones and Morency, EMNLP 2017]

Explicitly models unimodal, 
bimodal and trimodal

interactions !
· · ·

· · ·

Audio
𝒁

· · ·

· · ·

Text
𝑿

𝒉𝒙 𝒉𝒛

· · ·

· · ·

Image
𝒀

𝒉𝒚

𝒉𝒛

𝒉𝒙

𝒉𝒚

𝒉𝒙 ⊗𝒉𝒚
𝒉𝒙 ⊗𝒉𝒛

𝒉𝒛⊗𝒉𝒚

𝒉𝒙 ⊗𝒉𝒚 ⊗𝒉𝒛
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Experimental Results – MOSI Dataset

Improvement over State-Of-The-Art
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Visual

Language

① Decomposition     of weight 𝑊.

② Decomposition of input tensor 𝑍.

③ Rearrange the       computation of ℎ.

Visual

Language

Low-rank Multimodal Fusion

Tensor Fusion Networks

From Tensor Representation to Low-rank Fusion
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𝑤𝑙
(1)⨂

+ + ⋯

𝑤𝑣
(1)

𝑤𝑙
(2)⨂

𝑤𝑣
(2)

∙⨂
𝟏

𝟏

𝑧𝑙

𝑧𝑣

𝒵

𝟏

𝒲 = ℎ

① Decomposition of weight tensor W

60



61

𝑤𝑙
(1)⨂

+ + ⋯

𝑤𝑙
(2)⨂

𝑤𝑣
(1)

𝑤𝑣
(2)

∙⨂

𝟏

𝑧𝑙

𝟏

𝑧𝑣

𝒵

𝟏

= ℎ

② Decomposition of Z
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𝑤𝑙
(1)

𝑤𝑙
(2)

𝑤𝑣
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𝑤𝑣
(2)

𝟏

𝑧𝑙

𝟏

𝑧𝑣

= ℎ∙ + ⋯+ ∙ + ⋯+∘

③ Rearranging computation
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Multimodal Encoder-Decoder

· · ·

· · ·

· · ·

· · ·

Text Image

···

𝒀𝑿

▪ Visual modality often 

encoded using CNN

▪ Language modality will 

be decoded using LSTM 

▪ A simple multilayer 

perceptron will be used 

to translate from visual 

(CNN) to language 

(LSTM)


